Как я могу получить собственные значения и собственные векторы приложения PCA?
from sklearn.decomposition import PCA
clf=PCA(0.98,whiten=True) #converse 98% variance
X_train=clf.fit_transform(X_train)
X_test=clf.transform(X_test)
Я не могу найти его в документах.
1. Я "не" способен понять различные результаты здесь.
Изменить:
def pca_code(data):
#raw_implementation
var_per=.98
data-=np.mean(data, axis=0)
data/=np.std(data, axis=0)
cov_mat=np.cov(data, rowvar=False)
evals, evecs = np.linalg.eigh(cov_mat)
idx = np.argsort(evals)[::-1]
evecs = evecs[:,idx]
evals = evals[idx]
variance_retained=np.cumsum(evals)/np.sum(evals)
index=np.argmax(variance_retained>=var_per)
evecs = evecs[:,:index+1]
reduced_data=np.dot(evecs.T, data.T).T
print(evals)
print("_"*30)
print(evecs)
print("_"*30)
#using scipy package
clf=PCA(var_per)
X_train=data.T
X_train=clf.fit_transform(X_train)
print(clf.explained_variance_)
print("_"*30)
print(clf.components_)
print("__"*30)
- Я хочу получить все собственные значения и собственные векторы вместо только приведенного множества с условием сходимости.