Добавляйте отбрасывающие слои между предварительно обработанными плотными слоями в керасе

В keras.applications есть модель VGG16, предварительно обученная на imagenet.

from keras.applications import VGG16
model = VGG16(weights='imagenet')

Эта модель имеет следующую структуру.


Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    fc1[0][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     fc2[0][0]                        
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________

Я хотел бы настроить эту модель с отсеивающими слоями между плотными слоями (fc1, fc2 и предсказаниями), сохраняя при этом все предварительно подготовленные веса модели неповрежденными. Я знаю, что можно получить доступ к каждому слою отдельно с помощью model.layers, но я не нашел нигде, как добавлять новые слои между существующими уровнями.

Какая лучшая практика?

Ответ 1

Я нашел ответ сам, используя функциональный API Keras

from keras.applications import VGG16
from keras.layers import Dropout
from keras.models import Model

model = VGG16(weights='imagenet')

# Store the fully connected layers
fc1 = model.layers[-3]
fc2 = model.layers[-2]
predictions = model.layers[-1]

# Create the dropout layers
dropout1 = Dropout(0.85)
dropout2 = Dropout(0.85)

# Reconnect the layers
x = dropout1(fc1.output)
x = fc2(x)
x = dropout2(x)
predictors = predictions(x)

# Create a new model
model2 = Model(input=model.input, output=predictors)

model2 имеет выпадающие слои, как я хотел

____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 4096)          0           fc1[0][0]                        
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    dropout_1[0][0]                  
____________________________________________________________________________________________________
dropout_2 (Dropout)              (None, 4096)          0           fc2[1][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     dropout_2[0][0]                  
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________