Фактор инфляции с изменением коэффициента в Python

Я пытаюсь вычислить коэффициент инфляции дисперсии (VIF) для каждого столбца в простом наборе данных в python:

a b c d
1 2 4 4
1 2 6 3
2 3 7 4
3 2 8 5
4 1 9 4

Я уже сделал это в R, используя функцию vif из библиотеки usdm, которая дает следующие результаты:

a <- c(1, 1, 2, 3, 4)
b <- c(2, 2, 3, 2, 1)
c <- c(4, 6, 7, 8, 9)
d <- c(4, 3, 4, 5, 4)

df <- data.frame(a, b, c, d)
vif_df <- vif(df)
print(vif_df)

Variables   VIF
   a        22.95
   b        3.00
   c        12.95
   d        3.00

Однако, когда я делаю то же самое в python, используя функцию statsmodel vif, мои результаты:

a = [1, 1, 2, 3, 4]
b = [2, 2, 3, 2, 1]
c = [4, 6, 7, 8, 9]
d = [4, 3, 4, 5, 4]

ck = np.column_stack([a, b, c, d])

vif = [variance_inflation_factor(ck, i) for i in range(ck.shape[1])]
print(vif)

Variables   VIF
   a        47.136986301369774
   b        28.931506849315081
   c        80.31506849315096
   d        40.438356164383549

Результаты сильно различаются, хотя исходные данные одинаковы. В общем, результаты из функции VIF statsmodel кажутся неправильными, но я не уверен, что это из-за того, как я это называю, или если это проблема с самой функцией.

Я надеялся, что кто-то поможет мне разобраться, неправильно ли я вызывал функцию statsmodel или объяснял расхождения в результатах. Если это проблема с функцией, есть ли какие-либо альтернативы VIF в python?

Ответ 1

Я считаю, что причина этого связана с различием в OLS Python. OLS, который используется в вычислении коэффициента инфляции python, не добавляет перехват по умолчанию. Однако вы определенно хотите перехватить.

То, что вы хотите сделать, это добавить еще один столбец в вашу матрицу ck, заполненный символами для представления константы. Это будет момент перехвата уравнения. Как только это будет сделано, ваши значения должны совпадать правильно.

Отредактировано: заменены нули на единицы

Ответ 2

Как упоминали другие и в этом посте Йозеф Пектольд, автор функции, variance_inflation_factor ожидает наличия константы в матрице объясняющих переменных. Можно использовать add_constant из statsmodels, чтобы добавить требуемую константу в фрейм данных перед передачей ее значений в функцию.

from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant

df = pd.DataFrame(
    {'a': [1, 1, 2, 3, 4],
     'b': [2, 2, 3, 2, 1],
     'c': [4, 6, 7, 8, 9],
     'd': [4, 3, 4, 5, 4]}
)

X = add_constant(df)
>>> pd.Series([variance_inflation_factor(X.values, i) 
               for i in range(X.shape[1])], 
              index=X.columns)
const    136.875
a         22.950
b          3.000
c         12.950
d          3.000
dtype: float64

Я полагаю, что вы также можете добавить константу в самый правый столбец данных, используя команду assign:

X = df.assign(const=1)
>>> pd.Series([variance_inflation_factor(X.values, i) 
               for i in range(X.shape[1])], 
              index=X.columns)
a         22.950
b          3.000
c         12.950
d          3.000
const    136.875
dtype: float64

Сам исходный код довольно лаконичен:

def variance_inflation_factor(exog, exog_idx):
    """
    exog : ndarray, (nobs, k_vars)
        design matrix with all explanatory variables, as for example used in
        regression
    exog_idx : int
        index of the exogenous variable in the columns of exog
    """
    k_vars = exog.shape[1]
    x_i = exog[:, exog_idx]
    mask = np.arange(k_vars) != exog_idx
    x_noti = exog[:, mask]
    r_squared_i = OLS(x_i, x_noti).fit().rsquared
    vif = 1. / (1. - r_squared_i)
    return vif

Также довольно просто изменить код так, чтобы он возвращал все VIFы в виде серии:

from statsmodels.regression.linear_model import OLS
from statsmodels.tools.tools import add_constant

def variance_inflation_factors(exog_df):
    '''
    Parameters
    ----------
    exog_df : dataframe, (nobs, k_vars)
        design matrix with all explanatory variables, as for example used in
        regression.

    Returns
    -------
    vif : Series
        variance inflation factors
    '''
    exog_df = add_constant(exog_df)
    vifs = pd.Series(
        [1 / (1. - OLS(exog_df[col].values, 
                       exog_df.loc[:, exog_df.columns != col].values).fit().rsquared) 
         for col in exog_df],
        index=exog_df.columns,
        name='VIF'
    )
    return vifs

>>> variance_inflation_factors(df)
const    136.875
a         22.950
b          3.000
c         12.950
Name: VIF, dtype: float64

Ответ 3

Для будущих посетителей этой темы (как я):

import numpy as np
import scipy as sp

a = [1, 1, 2, 3, 4]
b = [2, 2, 3, 2, 1]
c = [4, 6, 7, 8, 9]
d = [4, 3, 4, 5, 4]

ck = np.column_stack([a, b, c, d])
cc = sp.corrcoef(ck, rowvar=False)
VIF = np.linalg.inv(cc)
VIF.diagonal()

Этот код дает

array([22.95,  3.  , 12.95,  3.  ])

[РЕДАКТИРОВАТЬ]

В ответ на комментарий я постарался DataFrame использовать DataFrame (для инвертирования матрицы требуется numpy).

import pandas as pd
import numpy as np

a = [1, 1, 2, 3, 4]
b = [2, 2, 3, 2, 1]
c = [4, 6, 7, 8, 9]
d = [4, 3, 4, 5, 4]

df = pd.DataFrame({'a':a,'b':b,'c':c,'d':d})
df_cor = df.corr()
pd.DataFrame(np.linalg.inv(df.corr().values), index = df_cor.index, columns=df_cor.columns)

Код дает

       a            b           c           d
a   22.950000   6.453681    -16.301917  -6.453681
b   6.453681    3.000000    -4.080441   -2.000000
c   -16.301917  -4.080441   12.950000   4.080441
d   -6.453681   -2.000000   4.080441    3.000000

Диагональные элементы дают VIF.

Ответ 4

Если вы не хотите иметь дело с variance_inflation_factor и add_constant. Пожалуйста, рассмотрите следующие две функции.

1. Используйте формулу в statasmodels:

import pandas as pd
import statsmodels.formula.api as smf

def get_vif(exogs, data):
    '''Return VIF (variance inflation factor) DataFrame

    Args:
    exogs (list): list of exogenous/independent variables
    data (DataFrame): the df storing all variables

    Returns:
    VIF and Tolerance DataFrame for each exogenous variable

    Notes:
    Assume we have a list of exogenous variable [X1, X2, X3, X4].
    To calculate the VIF and Tolerance for each variable, we regress
    each of them against other exogenous variables. For instance, the
    regression model for X3 is defined as:
                        X3 ~ X1 + X2 + X4
    And then we extract the R-squared from the model to calculate:
                    VIF = 1 / (1 - R-squared)
                    Tolerance = 1 - R-squared
    The cutoff to detect multicollinearity:
                    VIF > 10 or Tolerance < 0.1
    '''

    # initialize dictionaries
    vif_dict, tolerance_dict = {}, {}

    # create formula for each exogenous variable
    for exog in exogs:
        not_exog = [i for i in exogs if i != exog]
        formula = f"{exog} ~ {' + '.join(not_exog)}"

        # extract r-squared from the fit
        r_squared = smf.ols(formula, data=data).fit().rsquared

        # calculate VIF
        vif = 1/(1 - r_squared)
        vif_dict[exog] = vif

        # calculate tolerance
        tolerance = 1 - r_squared
        tolerance_dict[exog] = tolerance

    # return VIF DataFrame
    df_vif = pd.DataFrame({'VIF': vif_dict, 'Tolerance': tolerance_dict})

    return df_vif


2. Используйте LinearRegression в sklearn:

# import warnings
# warnings.simplefilter(action='ignore', category=FutureWarning)
import pandas as pd
from sklearn.linear_model import LinearRegression

def sklearn_vif(exogs, data):

    # initialize dictionaries
    vif_dict, tolerance_dict = {}, {}

    # form input data for each exogenous variable
    for exog in exogs:
        not_exog = [i for i in exogs if i != exog]
        X, y = data[not_exog], data[exog]

        # extract r-squared from the fit
        r_squared = LinearRegression().fit(X, y).score(X, y)

        # calculate VIF
        vif = 1/(1 - r_squared)
        vif_dict[exog] = vif

        # calculate tolerance
        tolerance = 1 - r_squared
        tolerance_dict[exog] = tolerance

    # return VIF DataFrame
    df_vif = pd.DataFrame({'VIF': vif_dict, 'Tolerance': tolerance_dict})

    return df_vif


Пример:

import seaborn as sns

df = sns.load_dataset('car_crashes')
exogs = ['alcohol', 'speeding', 'no_previous', 'not_distracted']

[In] %%timeit -n 100
get_vif(exogs=exogs, data=df)

[Out]
                      VIF   Tolerance
alcohol          3.436072   0.291030
no_previous      3.113984   0.321132
not_distracted   2.668456   0.374749
speeding         1.884340   0.530690

69.6 ms ± 8.96 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

[In] %%timeit -n 100
sklearn_vif(exogs=exogs, data=df)

[Out]
                      VIF   Tolerance
alcohol          3.436072   0.291030
no_previous      3.113984   0.321132
not_distracted   2.668456   0.374749
speeding         1.884340   0.530690

15.7 ms ± 1.4 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

Ответ 5

Пример для Бостонских данных:

VIF рассчитывается вспомогательной регрессией, поэтому не зависит от фактического соответствия.

Смотри ниже:

from patsy import dmatrices
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm

# Break into left and right hand side; y and X
y, X = dmatrices(formula="medv ~ crim + zn + nox + ptratio + black + rm ", data=boston, return_type="dataframe")

# For each Xi, calculate VIF
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]

# Fit X to y
result = sm.OLS(y, X).fit()

Ответ 6

Я написал эту функцию на основе некоторых других сообщений, которые я видел в Stack и CrossValidated. Он показывает функции, которые превышают пороговое значение, и возвращает новый фреймворк с удаленными функциями.

from statsmodels.stats.outliers_influence import variance_inflation_factor 
from statsmodels.tools.tools import add_constant

def calculate_vif_(df, thresh=5):
    '''
    Calculates VIF each feature in a pandas dataframe
    A constant must be added to variance_inflation_factor or the results will be incorrect

    :param X: the pandas dataframe
    :param thresh: the max VIF value before the feature is removed from the dataframe
    :return: dataframe with features removed
    '''
    const = add_constant(df)
    cols = const.columns
    variables = np.arange(const.shape[1])
    vif_df = pd.Series([variance_inflation_factor(const.values, i) 
               for i in range(const.shape[1])], 
              index=const.columns).to_frame()

    vif_df = vif_df.sort_values(by=0, ascending=False).rename(columns={0: 'VIF'})
    vif_df = vif_df.drop('const')
    vif_df = vif_df[vif_df['VIF'] > thresh]

    print 'Features above VIF threshold:\n'
    print vif_df[vif_df['VIF'] > thresh]

    col_to_drop = list(vif_df.index)

    for i in col_to_drop:
        print 'Dropping: {}'.format(i)
        df = df.drop(columns=i)

    return df