Как определить потребление ЦП и памяти изнутри процесса?

У меня когда-то была задача определить следующие параметры производительности внутри запущенного приложения:

  • Доступная общая виртуальная память
  • Используемая виртуальная память
  • Виртуальная память, используемая в настоящее время моим процессом
  • Доступная общая оперативная память
  • Используемая оперативная память
  • Оперативная память, используемая в настоящее время в моем процессе
  • % Используемый в настоящее время процессор
  • % Процессор, используемый в настоящее время в моем процессе

Код должен был запускаться в Windows и Linux. Несмотря на то, что это кажется стандартной задачей, поиск необходимой информации в руководствах (WIN32 API, GNU docs), а также в Интернете занял у меня несколько дней, потому что так много неполной/неправильной/устаревшей информации по этой теме узнал там.

Чтобы спасти других от той же проблемы, я подумал, что было бы неплохо собрать всю разрозненную информацию и то, что я обнаружил в результате проб и ошибок здесь, в одном месте.

Ответ 1

Windows

Некоторые из приведенных выше значений легко доступны из соответствующего API-интерфейса WIN32, я просто перечислю их здесь для полноты. Другие, однако, должны быть получены из библиотеки Performance Data Helper (PDH), которая немного "не интуитивна" и требует много трудных проб и ошибок, чтобы приступить к работе. (По крайней мере, это заняло у меня довольно много времени, возможно, я был немного глупым...)

Примечание: для ясности вся проверка ошибок была исключена из следующего кода. Проверьте коды возврата...!


  • Общая виртуальная память:

    #include "windows.h"
    
    MEMORYSTATUSEX memInfo;
    memInfo.dwLength = sizeof(MEMORYSTATUSEX);
    GlobalMemoryStatusEx(&memInfo);
    DWORDLONG totalVirtualMem = memInfo.ullTotalPageFile;
    

    Примечание. Название "TotalPageFile" вводит в заблуждение. В действительности этот параметр дает "Размер виртуальной памяти", который представляет собой размер файла подкачки плюс установленная оперативная память.

  • Виртуальная память в настоящее время используется:

    Тот же код, что и в "Всего виртуальной памяти", а затем

    DWORDLONG virtualMemUsed = memInfo.ullTotalPageFile - memInfo.ullAvailPageFile;
    
  • Виртуальная память, используемая в настоящее время текущим процессом:

    #include "windows.h"
    #include "psapi.h"
    
    PROCESS_MEMORY_COUNTERS_EX pmc;
    GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
    SIZE_T virtualMemUsedByMe = pmc.PrivateUsage;
    



  • Общая физическая память (ОЗУ):

    Тот же код, что и в "Всего виртуальной памяти", а затем

    DWORDLONG totalPhysMem = memInfo.ullTotalPhys;
    
  • Физическая память, используемая в настоящее время:

    Same code as in "Total Virtual Memory" and then
    
    DWORDLONG physMemUsed = memInfo.ullTotalPhys - memInfo.ullAvailPhys;
    
  • Физическая память, используемая в настоящее время текущим процессом:

    Тот же код, что и в "Виртуальной памяти, используемой текущим процессом", а затем

    SIZE_T physMemUsedByMe = pmc.WorkingSetSize;
    



  • Процессор, используемый в настоящее время:

    #include "TCHAR.h"
    #include "pdh.h"
    
    static PDH_HQUERY cpuQuery;
    static PDH_HCOUNTER cpuTotal;
    
    void init(){
        PdhOpenQuery(NULL, NULL, &cpuQuery);
        // You can also use L"\\Processor(*)\\% Processor Time" and get individual CPU values with PdhGetFormattedCounterArray()
        PdhAddEnglishCounter(cpuQuery, L"\\Processor(_Total)\\% Processor Time", NULL, &cpuTotal);
        PdhCollectQueryData(cpuQuery);
    }
    
    double getCurrentValue(){
        PDH_FMT_COUNTERVALUE counterVal;
    
        PdhCollectQueryData(cpuQuery);
        PdhGetFormattedCounterValue(cpuTotal, PDH_FMT_DOUBLE, NULL, &counterVal);
        return counterVal.doubleValue;
    }
    
  • Процессор, используемый в настоящее время текущим процессом:

    #include "windows.h"
    
    static ULARGE_INTEGER lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    static HANDLE self;
    
    void init(){
        SYSTEM_INFO sysInfo;
        FILETIME ftime, fsys, fuser;
    
        GetSystemInfo(&sysInfo);
        numProcessors = sysInfo.dwNumberOfProcessors;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&lastCPU, &ftime, sizeof(FILETIME));
    
        self = GetCurrentProcess();
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&lastSysCPU, &fsys, sizeof(FILETIME));
        memcpy(&lastUserCPU, &fuser, sizeof(FILETIME));
    }
    
    double getCurrentValue(){
        FILETIME ftime, fsys, fuser;
        ULARGE_INTEGER now, sys, user;
        double percent;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&now, &ftime, sizeof(FILETIME));
    
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&sys, &fsys, sizeof(FILETIME));
        memcpy(&user, &fuser, sizeof(FILETIME));
        percent = (sys.QuadPart - lastSysCPU.QuadPart) +
            (user.QuadPart - lastUserCPU.QuadPart);
        percent /= (now.QuadPart - lastCPU.QuadPart);
        percent /= numProcessors;
        lastCPU = now;
        lastUserCPU = user;
        lastSysCPU = sys;
    
        return percent * 100;
    }
    

Linux

В Linux выбор, который на первый getrusage() казался очевидным, заключался в использовании API-интерфейсов POSIX, таких как getrusage() и т.д. Я потратил некоторое время, пытаясь заставить это работать, но никогда не получал значимых значений. Когда я наконец проверил сами исходники ядра, я обнаружил, что, по-видимому, эти API еще не полностью реализованы в ядре Linux 2.6 !?

В итоге я получил все значения через комбинацию чтения псевдофайловой системы /proc и вызовов ядра.

  • Общая виртуальная память:

    #include "sys/types.h"
    #include "sys/sysinfo.h"
    
    struct sysinfo memInfo;
    
    sysinfo (&memInfo);
    long long totalVirtualMem = memInfo.totalram;
    //Add other values in next statement to avoid int overflow on right hand side...
    totalVirtualMem += memInfo.totalswap;
    totalVirtualMem *= memInfo.mem_unit;
    
  • Виртуальная память в настоящее время используется:

    Тот же код, что и в "Всего виртуальной памяти", а затем

    long long virtualMemUsed = memInfo.totalram - memInfo.freeram;
    //Add other values in next statement to avoid int overflow on right hand side...
    virtualMemUsed += memInfo.totalswap - memInfo.freeswap;
    virtualMemUsed *= memInfo.mem_unit;
    
  • Виртуальная память, используемая в настоящее время текущим процессом:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    int parseLine(char* line){
        // This assumes that a digit will be found and the line ends in " Kb".
        int i = strlen(line);
        const char* p = line;
        while (*p <'0' || *p > '9') p++;
        line[i-3] = '\0';
        i = atoi(p);
        return i;
    }
    
    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmSize:", 7) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • Общая физическая память (ОЗУ):

    Тот же код, что и в "Всего виртуальной памяти", а затем

    long long totalPhysMem = memInfo.totalram;
    //Multiply in next statement to avoid int overflow on right hand side...
    totalPhysMem *= memInfo.mem_unit;
    
  • Физическая память, используемая в настоящее время:

    Тот же код, что и в "Всего виртуальной памяти", а затем

    long long physMemUsed = memInfo.totalram - memInfo.freeram;
    //Multiply in next statement to avoid int overflow on right hand side...
    physMemUsed *= memInfo.mem_unit;
    
  • Физическая память, используемая в настоящее время текущим процессом:

    Измените getValue() в "Виртуальной памяти, используемой текущим процессом" следующим образом:

    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmRSS:", 6) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • Процессор, используемый в настоящее время:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
    
    void init(){
        FILE* file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow,
            &lastTotalSys, &lastTotalIdle);
        fclose(file);
    }
    
    double getCurrentValue(){
        double percent;
        FILE* file;
        unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total;
    
        file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &totalUser, &totalUserLow,
            &totalSys, &totalIdle);
        fclose(file);
    
        if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow ||
            totalSys < lastTotalSys || totalIdle < lastTotalIdle){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) +
                (totalSys - lastTotalSys);
            percent = total;
            total += (totalIdle - lastTotalIdle);
            percent /= total;
            percent *= 100;
        }
    
        lastTotalUser = totalUser;
        lastTotalUserLow = totalUserLow;
        lastTotalSys = totalSys;
        lastTotalIdle = totalIdle;
    
        return percent;
    }
    
  • Процессор, используемый в настоящее время текущим процессом:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    #include "sys/times.h"
    #include "sys/vtimes.h"
    
    static clock_t lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    
    void init(){
        FILE* file;
        struct tms timeSample;
        char line[128];
    
        lastCPU = times(&timeSample);
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        file = fopen("/proc/cpuinfo", "r");
        numProcessors = 0;
        while(fgets(line, 128, file) != NULL){
            if (strncmp(line, "processor", 9) == 0) numProcessors++;
        }
        fclose(file);
    }
    
    double getCurrentValue(){
        struct tms timeSample;
        clock_t now;
        double percent;
    
        now = times(&timeSample);
        if (now <= lastCPU || timeSample.tms_stime < lastSysCPU ||
            timeSample.tms_utime < lastUserCPU){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            percent = (timeSample.tms_stime - lastSysCPU) +
                (timeSample.tms_utime - lastUserCPU);
            percent /= (now - lastCPU);
            percent /= numProcessors;
            percent *= 100;
        }
        lastCPU = now;
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        return percent;
    }
    

TODO: другие платформы

Я бы предположил, что часть кода Linux также работает для Unixes, за исключением частей, которые читают псевдофайловую систему /proc. Возможно, в Unix эти части можно заменить на getrusage() и подобные функции? Если кто-то с ноу-хау Unix может отредактировать этот ответ и заполнить детали?!

Ответ 2

Mac OS X

Я надеялся найти аналогичную информацию и для Mac OS X. Поскольку его здесь не было, я вышел и сам выкопал. Вот некоторые из вещей, которые я нашел. Если у кого-нибудь есть другие предложения, я бы хотел их услышать.

Общая виртуальная память

Это сложно сделать в Mac OS X, потому что он не использует предустановленный раздел подкачки или файл, подобный Linux. Здесь запись из документации Apple:

Примечание.. В отличие от большинства операционных систем на базе Unix, Mac OS X не использует предварительно выделенный раздел подкачки для виртуальной памяти. Вместо этого он использует все свободное место на загрузочном разделе машин.

Итак, если вы хотите узнать, сколько виртуальной памяти все еще доступно, вам нужно получить размер корневого раздела. Вы можете сделать это вот так:

struct statfs stats;
if (0 == statfs("/", &stats))
{
    myFreeSwap = (uint64_t)stats.f_bsize * stats.f_bfree;
}

Общее количество используемых виртуальных машин

Вызов systcl с ключом "vm.swapusage" предоставляет интересную информацию об использовании swap:

sysctl -n vm.swapusage
vm.swapusage: total = 3072.00M  used = 2511.78M  free = 560.22M  (encrypted)

Не то, чтобы общее использование swap, отображаемое здесь, может измениться, если требуется больше swap, как описано в разделе выше. Таким образом, общая сумма фактически равна текущему свопу. В С++ эти данные могут быть запрошены следующим образом:

xsw_usage vmusage = {0};
size_t size = sizeof(vmusage);
if( sysctlbyname("vm.swapusage", &vmusage, &size, NULL, 0)!=0 )
{
   perror( "unable to get swap usage by calling sysctlbyname(\"vm.swapusage\",...)" );
}

Обратите внимание, что "xsw_usage", объявленный в sysctl.h, кажется, не документирован, и я подозреваю, что есть более переносимый способ доступа к этим значениям.

Виртуальная память, используемая в настоящее время в моем процессе

Вы можете получить статистику о текущем процессе с помощью функции task_info. Это включает текущий размер резидента вашего процесса и текущий виртуальный размер.

#include<mach/mach.h>

struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;

if (KERN_SUCCESS != task_info(mach_task_self(),
                              TASK_BASIC_INFO, (task_info_t)&t_info, 
                              &t_info_count))
{
    return -1;
}
// resident size is in t_info.resident_size;
// virtual size is in t_info.virtual_size;

Доступная общая оперативная память

Объем физической оперативной памяти, доступный в вашей системе, доступен с помощью системной функции sysctl следующим образом:

#include <sys/types.h>
#include <sys/sysctl.h>
...
int mib[2];
int64_t physical_memory;
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
length = sizeof(int64_t);
sysctl(mib, 2, &physical_memory, &length, NULL, 0);

Используемая оперативная память

Вы можете получить общую статистику памяти из системной функции host_statistics.

#include <mach/vm_statistics.h>
#include <mach/mach_types.h>
#include <mach/mach_init.h>
#include <mach/mach_host.h>

int main(int argc, const char * argv[]) {
    vm_size_t page_size;
    mach_port_t mach_port;
    mach_msg_type_number_t count;
    vm_statistics64_data_t vm_stats;

    mach_port = mach_host_self();
    count = sizeof(vm_stats) / sizeof(natural_t);
    if (KERN_SUCCESS == host_page_size(mach_port, &page_size) &&
        KERN_SUCCESS == host_statistics64(mach_port, HOST_VM_INFO,
                                        (host_info64_t)&vm_stats, &count))
    {
        long long free_memory = (int64_t)vm_stats.free_count * (int64_t)page_size;

        long long used_memory = ((int64_t)vm_stats.active_count +
                                 (int64_t)vm_stats.inactive_count +
                                 (int64_t)vm_stats.wire_count) *  (int64_t)page_size;
        printf("free memory: %lld\nused memory: %lld\n", free_memory, used_memory);
    }

    return 0;
}

Здесь стоит отметить, что в Mac OS X имеется пять типов страниц памяти. Они выглядят следующим образом:

  • Проводные страницы, которые заблокированы на месте и не могут быть заменены
  • Активные страницы, загружающиеся в физическую память, и их было бы довольно сложно заменить
  • Неактивные страницы, загружаемые в память, но не использовавшиеся в последнее время и даже не требующие вообще. Это потенциальные кандидаты на обмен. Возможно, эта память будет очищена.
  • Кэшированные страницы, некоторые из которых кэшированы, которые могут быть легко использованы повторно. Кэшированная память, вероятно, не требовала бы промывки. Все еще можно активировать кэшированные страницы.
  • Бесплатные страницы, которые полностью бесплатны и готовы к использованию.

Хорошо отметить, что только из-за того, что Mac OS X может иногда показывать очень мало фактической свободной памяти, это может быть не очень хорошим показателем того, сколько готово к использованию в короткие сроки.

Оперативная память, используемая в настоящее время в моем процессе

См. "Виртуальная память, используемая в настоящее время в моем процессе" выше. Используется тот же код.

Ответ 3

Linux

В Linux эта информация доступна в файловой системе /proc. Я не большой поклонник используемого формата текстового файла, так как каждый дистрибутив Linux настраивает хотя бы один важный файл. Быстрый взгляд, как источник на "ps", показывает беспорядок.

Но вот где найти нужную информацию:

/proc/meminfo содержит большую часть общесистемной информации, которую вы ищете. Здесь это похоже на мою систему; Я думаю, что вас интересует MemTotal, MemFree, SwapTotal и SwapFree:

Anderson cxc # more /proc/meminfo
MemTotal:      4083948 kB
MemFree:       2198520 kB
Buffers:         82080 kB
Cached:        1141460 kB
SwapCached:          0 kB
Active:        1137960 kB
Inactive:       608588 kB
HighTotal:     3276672 kB
HighFree:      1607744 kB
LowTotal:       807276 kB
LowFree:        590776 kB
SwapTotal:     2096440 kB
SwapFree:      2096440 kB
Dirty:              32 kB
Writeback:           0 kB
AnonPages:      523252 kB
Mapped:          93560 kB
Slab:            52880 kB
SReclaimable:    24652 kB
SUnreclaim:      28228 kB
PageTables:       2284 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
CommitLimit:   4138412 kB
Committed_AS:  1845072 kB
VmallocTotal:   118776 kB
VmallocUsed:      3964 kB
VmallocChunk:   112860 kB
HugePages_Total:     0
HugePages_Free:      0
HugePages_Rsvd:      0
Hugepagesize:     2048 kB

Для использования ЦП вам нужно немного поработать. Linux обеспечивает общее использование ЦП с момента запуска системы; это, вероятно, не то, что вас интересует. Если вы хотите узнать, что использовалось в CPU за последнюю секунду или 10 секунд, вам нужно запросить информацию и рассчитать ее самостоятельно.

Информация доступна в /proc/stat, которая хорошо документирована на http://www.linuxhowtos.org/System/procstat.htm; вот как это выглядит на моем 4-ядерном ящике:

Anderson cxc #  more /proc/stat
cpu  2329889 0 2364567 1063530460 9034 9463 96111 0
cpu0 572526 0 636532 265864398 2928 1621 6899 0
cpu1 590441 0 531079 265949732 4763 351 8522 0
cpu2 562983 0 645163 265796890 682 7490 71650 0
cpu3 603938 0 551790 265919440 660 0 9040 0
intr 37124247
ctxt 50795173133
btime 1218807985
processes 116889
procs_running 1
procs_blocked 0

Во-первых, вам нужно определить, сколько процессоров (или процессоров или процессорных ядер) доступно в системе. Для этого подсчитайте количество записей cpuN, где N начинается с 0 и увеличивается. Не считайте строку "cpu" , которая представляет собой комбинацию строк cpuN. В моем примере вы можете увидеть cpu0 через cpu3, ​​в общей сложности 4 процессора. С этого момента вы можете игнорировать cpu0..cpu3 и сосредоточиться только на линии "cpu" .

Затем вам нужно знать, что четвертое число в этих строках является мерой времени простоя, и, следовательно, четвертое число в строке "cpu" является общим временем простоя для всех процессоров с момента загрузки. Это время измеряется в Linux "jiffies", каждый из которых составляет 1/100 секунды.

Но вы не заботитесь об общем простоях; вы заботитесь о времени простоя в заданный период, например, в последнюю секунду. Вычислите это, вам нужно прочитать этот файл дважды, на 1 секунду. Затем вы можете выполнить разницу четвертого значения строки. Например, если взять образец и получить:

cpu  2330047 0 2365006 1063853632 9035 9463 96114 0

Затем через секунду вы получите этот образец:

cpu  2330047 0 2365007 1063854028 9035 9463 96114 0

Вычтите два числа, и вы получите разницу 396, а это означает, что ваш процессор простаивал 3,96 секунды из последних 1,00 секунд. Трюк, конечно же, заключается в том, что вам нужно разделить количество процессоров. 3.96/4 = 0.99, и ваш процент простоя; 99% бездействия и 1% заняты.

В моем коде у меня есть кольцевой буфер из 360 записей, и я читаю этот файл каждую секунду. Это позволяет мне быстро вычислить использование ЦП в течение 1 секунды, 10 секунд и т.д., Вплоть до 1 часа.

Для информации, относящейся к конкретному процессу, вы должны искать в /proc/pid; если вам не нравится приступать к pid, вы можете посмотреть в /proc/self.

CPU, используемый вашим процессом, доступен в /proc/self/stat. Это нечетный файл, состоящий из одной строки; например:

19340 (whatever) S 19115 19115 3084 34816 19115 4202752 118200 607 0 0 770 384 2
 7 20 0 77 0 266764385 692477952 105074 4294967295 134512640 146462952 321468364
8 3214683328 4294960144 0 2147221247 268439552 1276 4294967295 0 0 17 0 0 0 0

Важными данными здесь являются 13-й и 14-й токены (0 и 770 здесь). 13-й токен - это количество jiffies, которое процесс выполнил в пользовательском режиме, а 14-е число - это число jiffies, которое процесс выполнил в режиме ядра. Добавьте два вместе, и у вас есть полное использование ЦП.

Опять же, вам придется периодически пробовать этот файл и вычислять diff, чтобы определить время использования процессора.

Изменить: помните, что при вычислении использования процессора, вы должны учитывать 1) количество потоков в вашем процессе и 2) количество процессоров в системе. Например, если ваш однопоточный процесс использует только 25% CPU, это может быть хорошим или плохим. Хорошо на однопроцессорной системе, но плохой на 4-процессорной системе; это означает, что ваш процесс работает постоянно и использует 100% доступных ему циклов ЦП.

Для информации о памяти, относящейся к процессу, вы можете просмотреть /proc/self/status, который выглядит следующим образом:

Name:   whatever
State:  S (sleeping)
Tgid:   19340
Pid:    19340
PPid:   19115
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
FDSize: 256
Groups: 0 1 2 3 4 6 10 11 20 26 27
VmPeak:   676252 kB
VmSize:   651352 kB
VmLck:         0 kB
VmHWM:    420300 kB
VmRSS:    420296 kB
VmData:   581028 kB
VmStk:       112 kB
VmExe:     11672 kB
VmLib:     76608 kB
VmPTE:      1244 kB
Threads:        77
SigQ:   0/36864
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: fffffffe7ffbfeff
SigIgn: 0000000010001000
SigCgt: 20000001800004fc
CapInh: 0000000000000000
CapPrm: 00000000ffffffff
CapEff: 00000000fffffeff
Cpus_allowed:   0f
Mems_allowed:   1
voluntary_ctxt_switches:        6518
nonvoluntary_ctxt_switches:     6598

Записи, начинающиеся с 'Vm', являются интересными:

  • VmPeak - это максимальное пространство виртуальной памяти, используемое процессом, в kB (1024 байта).
  • VmSize - это текущее пространство виртуальной памяти, используемое процессом, в kB. В моем примере это довольно большой: 651,352 кБ, или около 636 мегабайт.
  • VmRssпредставляет собой объем памяти, который был отображен в адресное пространство процесса или его резидентный размер набора. Это существенно меньше (420 296 кБ, или около 410 мегабайт). Разница: моя программа отобразила 636 МБ с помощью mmap(), но имеет доступ только к 410 МБ, и поэтому ему было назначено только 410 МБ страниц.

Единственный элемент, о котором я не уверен, - Swappace, используемый в настоящее время в моем процессе. Я не знаю, доступно ли это.

Ответ 4

в окнах вы можете получить использование процессора по коду ниже:

#include <windows.h>
#include <stdio.h>

    //------------------------------------------------------------------------------------------------------------------
    // Prototype(s)...
    //------------------------------------------------------------------------------------------------------------------
    CHAR cpuusage(void);

    //-----------------------------------------------------
    typedef BOOL ( __stdcall * pfnGetSystemTimes)( LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime );
    static pfnGetSystemTimes s_pfnGetSystemTimes = NULL;

    static HMODULE s_hKernel = NULL;
    //-----------------------------------------------------
    void GetSystemTimesAddress()
    {
        if( s_hKernel == NULL )
        {   
            s_hKernel = LoadLibrary( L"Kernel32.dll" );
            if( s_hKernel != NULL )
            {
                s_pfnGetSystemTimes = (pfnGetSystemTimes)GetProcAddress( s_hKernel, "GetSystemTimes" );
                if( s_pfnGetSystemTimes == NULL )
                {
                    FreeLibrary( s_hKernel ); s_hKernel = NULL;
                }
            }
        }
    }
    //----------------------------------------------------------------------------------------------------------------

    //----------------------------------------------------------------------------------------------------------------
    // cpuusage(void)
    // ==============
    // Return a CHAR value in the range 0 - 100 representing actual CPU usage in percent.
    //----------------------------------------------------------------------------------------------------------------
    CHAR cpuusage()
    {
        FILETIME               ft_sys_idle;
        FILETIME               ft_sys_kernel;
        FILETIME               ft_sys_user;

        ULARGE_INTEGER         ul_sys_idle;
        ULARGE_INTEGER         ul_sys_kernel;
        ULARGE_INTEGER         ul_sys_user;

        static ULARGE_INTEGER    ul_sys_idle_old;
        static ULARGE_INTEGER  ul_sys_kernel_old;
        static ULARGE_INTEGER  ul_sys_user_old;

        CHAR  usage = 0;

        // we cannot directly use GetSystemTimes on C language
        /* add this line :: pfnGetSystemTimes */
        s_pfnGetSystemTimes(&ft_sys_idle,    /* System idle time */
            &ft_sys_kernel,  /* system kernel time */
            &ft_sys_user);   /* System user time */

        CopyMemory(&ul_sys_idle  , &ft_sys_idle  , sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_kernel, &ft_sys_kernel, sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_user  , &ft_sys_user  , sizeof(FILETIME)); // Could been optimized away...

        usage  =
            (
            (
            (
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            -
            (ul_sys_idle.QuadPart-ul_sys_idle_old.QuadPart)
            )
            *
            (100)
            )
            /
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            );

        ul_sys_idle_old.QuadPart   = ul_sys_idle.QuadPart;
        ul_sys_user_old.QuadPart   = ul_sys_user.QuadPart;
        ul_sys_kernel_old.QuadPart = ul_sys_kernel.QuadPart;

        return usage;
    }
    //------------------------------------------------------------------------------------------------------------------
    // Entry point
    //------------------------------------------------------------------------------------------------------------------
    int main(void)
    {
        int n;
        GetSystemTimesAddress();
        for(n=0;n<20;n++)
        {
            printf("CPU Usage: %3d%%\r",cpuusage());
            Sleep(2000);
        }
        printf("\n");
        return 0;
    }

Ответ 5

Linux

Портативный способ чтения памяти и загрузки - это вызов sysinfo

Использование

   #include <sys/sysinfo.h>

   int sysinfo(struct sysinfo *info);

ОПИСАНИЕ

   Until Linux 2.3.16, sysinfo() used to return information in the
   following structure:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           char _f[22];             /* Pads structure to 64 bytes */
       };

   and the sizes were given in bytes.

   Since Linux 2.3.23 (i386), 2.3.48 (all architectures) the structure
   is:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           unsigned long totalhigh; /* Total high memory size */
           unsigned long freehigh;  /* Available high memory size */
           unsigned int mem_unit;   /* Memory unit size in bytes */
           char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding to 64 bytes */
       };

   and the sizes are given as multiples of mem_unit bytes.

Ответ 6

QNX

Так как это похоже на "wikipage of code", я хочу добавить код из базы знаний QNX (обратите внимание: это не моя работа, но я проверил ее, и он отлично работает в моей системе):

Как получить загрузку процессора в%: http://www.qnx.com/support/knowledgebase.html?id=50130000000P9b5

#include <atomic.h>
#include <libc.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/iofunc.h>
#include <sys/neutrino.h>
#include <sys/resmgr.h>
#include <sys/syspage.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/debug.h>
#include <sys/procfs.h>
#include <sys/syspage.h>
#include <sys/neutrino.h>
#include <sys/time.h>
#include <time.h>
#include <fcntl.h>
#include <devctl.h>
#include <errno.h>

#define MAX_CPUS 32

static float Loads[MAX_CPUS];
static _uint64 LastSutime[MAX_CPUS];
static _uint64 LastNsec[MAX_CPUS];
static int ProcFd = -1;
static int NumCpus = 0;


int find_ncpus(void) {
    return NumCpus;
}

int get_cpu(int cpu) {
    int ret;
    ret = (int)Loads[ cpu % MAX_CPUS ];
    ret = max(0,ret);
    ret = min(100,ret);
    return( ret );
}

static _uint64 nanoseconds( void ) {
    _uint64 sec, usec;
    struct timeval tval;
    gettimeofday( &tval, NULL );
    sec = tval.tv_sec;
    usec = tval.tv_usec;
    return( ( ( sec * 1000000 ) + usec ) * 1000 );
}

int sample_cpus( void ) {
    int i;
    debug_thread_t debug_data;
    _uint64 current_nsec, sutime_delta, time_delta;
    memset( &debug_data, 0, sizeof( debug_data ) );

    for( i=0; i<NumCpus; i++ ) {
        /* Get the sutime of the idle thread #i+1 */
        debug_data.tid = i + 1;
        devctl( ProcFd, DCMD_PROC_TIDSTATUS,
        &debug_data, sizeof( debug_data ), NULL );
        /* Get the current time */
        current_nsec = nanoseconds();
        /* Get the deltas between now and the last samples */
        sutime_delta = debug_data.sutime - LastSutime[i];
        time_delta = current_nsec - LastNsec[i];
        /* Figure out the load */
        Loads[i] = 100.0 - ( (float)( sutime_delta * 100 ) / (float)time_delta );
        /* Flat out strange rounding issues. */
        if( Loads[i] < 0 ) {
            Loads[i] = 0;
        }
        /* Keep these for reference in the next cycle */
        LastNsec[i] = current_nsec;
        LastSutime[i] = debug_data.sutime;
    }
    return EOK;
}

int init_cpu( void ) {
    int i;
    debug_thread_t debug_data;
    memset( &debug_data, 0, sizeof( debug_data ) );
/* Open a connection to proc to talk over.*/
    ProcFd = open( "/proc/1/as", O_RDONLY );
    if( ProcFd == -1 ) {
        fprintf( stderr, "pload: Unable to access procnto: %s\n",strerror( errno ) );
        fflush( stderr );
        return -1;
    }
    i = fcntl(ProcFd,F_GETFD);
    if(i != -1){
        i |= FD_CLOEXEC;
        if(fcntl(ProcFd,F_SETFD,i) != -1){
            /* Grab this value */
            NumCpus = _syspage_ptr->num_cpu;
            /* Get a starting point for the comparisons */
            for( i=0; i<NumCpus; i++ ) {
                /*
                * the sutime of idle thread is how much
                * time that thread has been using, we can compare this
                * against how much time has passed to get an idea of the
                * load on the system.
                */
                debug_data.tid = i + 1;
                devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL );
                LastSutime[i] = debug_data.sutime;
                LastNsec[i] = nanoseconds();
            }
            return(EOK);
        }
    }
    close(ProcFd);
    return(-1);
}

void close_cpu(void){
    if(ProcFd != -1){
        close(ProcFd);
        ProcFd = -1;
    }
}

int main(int argc, char* argv[]){
    int i,j;
    init_cpu();
    printf("System has: %d CPUs\n", NumCpus);
    for(i=0; i<20; i++) {
        sample_cpus();
        for(j=0; j<NumCpus;j++)
        printf("CPU #%d: %f\n", j, Loads[j]);
        sleep(1);
    }
    close_cpu();
}

Как получить свободную (!) память: http://www.qnx.com/support/knowledgebase.html?id=50130000000mlbx

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <err.h>
#include <sys/stat.h>
#include <sys/types.h>

int main( int argc, char *argv[] ){
    struct stat statbuf;
    paddr_t freemem;
    stat( "/proc", &statbuf );
    freemem = (paddr_t)statbuf.st_size;
    printf( "Free memory: %d bytes\n", freemem );
    printf( "Free memory: %d KB\n", freemem / 1024 );
    printf( "Free memory: %d MB\n", freemem / ( 1024 * 1024 ) );
    return 0;
} 

Ответ 7

Mac OS X - процессор

Общее использование процессора:

Извлечь системную информацию на MacOS X? :

#include <mach/mach_init.h>
#include <mach/mach_error.h>
#include <mach/mach_host.h>
#include <mach/vm_map.h>

static unsigned long long _previousTotalTicks = 0;
static unsigned long long _previousIdleTicks = 0;

// Returns 1.0f for "CPU fully pinned", 0.0f for "CPU idle", or somewhere in between
// You'll need to call this at regular intervals, since it measures the load between
// the previous call and the current one.
float GetCPULoad()
{
   host_cpu_load_info_data_t cpuinfo;
   mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
   if (host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&cpuinfo, &count) == KERN_SUCCESS)
   {
      unsigned long long totalTicks = 0;
      for(int i=0; i<CPU_STATE_MAX; i++) totalTicks += cpuinfo.cpu_ticks[i];
      return CalculateCPULoad(cpuinfo.cpu_ticks[CPU_STATE_IDLE], totalTicks);
   }
   else return -1.0f;
}

float CalculateCPULoad(unsigned long long idleTicks, unsigned long long totalTicks)
{
  unsigned long long totalTicksSinceLastTime = totalTicks-_previousTotalTicks;
  unsigned long long idleTicksSinceLastTime  = idleTicks-_previousIdleTicks;
  float ret = 1.0f-((totalTicksSinceLastTime > 0) ? ((float)idleTicksSinceLastTime)/totalTicksSinceLastTime : 0);
  _previousTotalTicks = totalTicks;
  _previousIdleTicks  = idleTicks;
  return ret;
}

Ответ 8

Я использовал этот следующий код в своем проекте на С++ и работал нормально:

static HANDLE self;
static int numProcessors;
SYSTEM_INFO sysInfo;

double percent;

numProcessors = sysInfo.dwNumberOfProcessors;

//Getting system times information
FILETIME SysidleTime;
FILETIME SyskernelTime; 
FILETIME SysuserTime; 
ULARGE_INTEGER SyskernelTimeInt, SysuserTimeInt;
GetSystemTimes(&SysidleTime, &SyskernelTime, &SysuserTime);
memcpy(&SyskernelTimeInt, &SyskernelTime, sizeof(FILETIME));
memcpy(&SysuserTimeInt, &SysuserTime, sizeof(FILETIME));
__int64 denomenator = SysuserTimeInt.QuadPart + SyskernelTimeInt.QuadPart;  

//Getting process times information
FILETIME ProccreationTime, ProcexitTime, ProcKernelTime, ProcUserTime;
ULARGE_INTEGER ProccreationTimeInt, ProcexitTimeInt, ProcKernelTimeInt, ProcUserTimeInt;
GetProcessTimes(self, &ProccreationTime, &ProcexitTime, &ProcKernelTime, &ProcUserTime);
memcpy(&ProcKernelTimeInt, &ProcKernelTime, sizeof(FILETIME));
memcpy(&ProcUserTimeInt, &ProcUserTime, sizeof(FILETIME));
__int64 numerator = ProcUserTimeInt.QuadPart + ProcKernelTimeInt.QuadPart;
//QuadPart represents a 64-bit signed integer (ULARGE_INTEGER)

percent = 100*(numerator/denomenator);

Ответ 9

Для Linux Вы также можете использовать /proc/self/statm для получения одной строки чисел, содержащей ключевую информацию о памяти процесса, которая является более быстрой вещью для обработки, чем просмотр длинного списка сообщенной информации по мере того, как вы получаете от proc/self/status

См. http://man7.org/linux/man-pages/man5/proc.5.html

   /proc/[pid]/statm
          Provides information about memory usage, measured in pages.
          The columns are:

              size       (1) total program size
                         (same as VmSize in /proc/[pid]/status)
              resident   (2) resident set size
                         (same as VmRSS in /proc/[pid]/status)
              shared     (3) number of resident shared pages (i.e., backed by a file)
                         (same as RssFile+RssShmem in /proc/[pid]/status)
              text       (4) text (code)
              lib        (5) library (unused since Linux 2.6; always 0)
              data       (6) data + stack
              dt         (7) dirty pages (unused since Linux 2.6; always 0)