Я только начал использовать Keras. Образец, над которым я работаю, имеет модель, и следующий фрагмент используется для запуска модели
from sklearn.preprocessing import LabelBinarizer
label_binarizer = LabelBinarizer()
y_one_hot = label_binarizer.fit_transform(y_train)
model.compile('adam', 'categorical_crossentropy', ['accuracy'])
history = model.fit(X_normalized, y_one_hot, nb_epoch=3, validation_split=0.2)
Я получаю следующий ответ:
Using TensorFlow backend. Train on 80 samples, validate on 20 samples Epoch 1/3
32/80 [===========>..................] - ETA: 0s - loss: 1.5831 - acc:
0.4062 80/80 [==============================] - 0s - loss: 1.3927 - acc:
0.4500 - val_loss: 0.7802 - val_acc: 0.8500 Epoch 2/3
32/80 [===========>..................] - ETA: 0s - loss: 0.9300 - acc:
0.7500 80/80 [==============================] - 0s - loss: 0.8490 - acc:
0.8000 - val_loss: 0.5772 - val_acc: 0.8500 Epoch 3/3
32/80 [===========>..................] - ETA: 0s - loss: 0.6397 - acc:
0.8750 64/80 [=======================>......] - ETA: 0s - loss: 0.6867 - acc:
0.7969 80/80 [==============================] - 0s - loss: 0.6638 - acc:
0.8000 - val_loss: 0.4294 - val_acc: 0.8500
В документации говорится, что возвращение возвращается
Случай истории. Его атрибут истории содержит всю информацию, собранную во время обучения.
Кто-нибудь знает, как интерпретировать экземпляр истории?
Например, что означает 32/80? Я предполагаю, что 80 - это количество образцов, но что такое 32? ETA: 0s??