Как сделать 4d-график с matplotlib с использованием произвольных данных

Этот вопрос связан с этим одним.

Я хотел бы знать, как применить предлагаемое решение к набору данных (4 столбца), например:

0.1 0 0.1 2.0
0.1 0 1.1 -0.498121712998
0.1 0 2.1 -0.49973005075
0.1 0 3.1 -0.499916082038
0.1 0 4.1 -0.499963726586
0.1 1 0.1 -0.0181405895692
0.1 1 1.1 -0.490774988618
0.1 1 2.1 -0.498653742846
0.1 1 3.1 -0.499580747953
0.1 1 4.1 -0.499818696063
0.1 2 0.1 -0.0107079119572
0.1 2 1.1 -0.483641823093
0.1 2 2.1 -0.497582061233
0.1 2 3.1 -0.499245863438
0.1 2 4.1 -0.499673749657
0.1 3 0.1 -0.0075248589089
0.1 3 1.1 -0.476713038166
0.1 3 2.1 -0.49651497615
0.1 3 3.1 -0.498911427589
0.1 3 4.1 -0.499528887295
0.1 4 0.1 -0.00579180003048
0.1 4 1.1 -0.469979974092
0.1 4 2.1 -0.495452458086
0.1 4 3.1 -0.498577439505
0.1 4 4.1 -0.499384108904
1.1 0 0.1 302.0
1.1 0 1.1 -0.272727272727
1.1 0 2.1 -0.467336140806
1.1 0 3.1 -0.489845926622
1.1 0 4.1 -0.495610916847
1.1 1 0.1 -0.000154915998165
1.1 1 1.1 -0.148803329865
1.1 1 2.1 -0.375881358454
1.1 1 3.1 -0.453749548548
1.1 1 4.1 -0.478942841849
1.1 2 0.1 -9.03765566114e-05
1.1 2 1.1 -0.0972702806613
1.1 2 2.1 -0.314291859842
1.1 2 3.1 -0.422606253083
1.1 2 4.1 -0.463359353084
1.1 3 0.1 -6.31234088628e-05
1.1 3 1.1 -0.0720095219203
1.1 3 2.1 -0.270015786897
1.1 3 3.1 -0.395462300716
1.1 3 4.1 -0.44875793248
1.1 4 0.1 -4.84199181874e-05
1.1 4 1.1 -0.0571187054704
1.1 4 2.1 -0.236660992042
1.1 4 3.1 -0.371593983211
1.1 4 4.1 -0.4350485869
2.1 0 0.1 1102.0
2.1 0 1.1 0.328324567994
2.1 0 2.1 -0.380952380952
2.1 0 3.1 -0.462992178846
2.1 0 4.1 -0.48400342421
2.1 1 0.1 -4.25137933034e-05
2.1 1 1.1 -0.0513190921508
2.1 1 2.1 -0.224866151101
2.1 1 3.1 -0.363752470126
2.1 1 4.1 -0.430700436658
2.1 2 0.1 -2.48003822279e-05
2.1 2 1.1 -0.0310025255124
2.1 2 2.1 -0.158022037087
2.1 2 3.1 -0.29944612818
2.1 2 4.1 -0.387965424205
2.1 3 0.1 -1.73211484062e-05
2.1 3 1.1 -0.0220466245862
2.1 3 2.1 -0.12162780064
2.1 3 3.1 -0.254424041889
2.1 3 4.1 -0.35294082311
2.1 4 0.1 -1.32862131387e-05
2.1 4 1.1 -0.0170828002197
2.1 4 2.1 -0.0988138417802
2.1 4 3.1 -0.221154587294
2.1 4 4.1 -0.323713596671
3.1 0 0.1 2402.0
3.1 0 1.1 1.30503380917
3.1 0 2.1 -0.240578771191
3.1 0 3.1 -0.41935483871
3.1 0 4.1 -0.465141248676
3.1 1 0.1 -1.95102493785e-05
3.1 1 1.1 -0.0248114638773
3.1 1 2.1 -0.135153019304
3.1 1 3.1 -0.274125336409
3.1 1 4.1 -0.36965644171
3.1 2 0.1 -1.13811197906e-05
3.1 2 1.1 -0.0147116366819
3.1 2 2.1 -0.0872950700627
3.1 2 3.1 -0.202935925412
3.1 2 4.1 -0.306612285308
3.1 3 0.1 -7.94877050259e-06
3.1 3 1.1 -0.0103624783432
3.1 3 2.1 -0.0642253568271
3.1 3 3.1 -0.160970897235
3.1 3 4.1 -0.261906474418
3.1 4 0.1 -6.09709039262e-06
3.1 4 1.1 -0.00798626913355
3.1 4 2.1 -0.0507564081263
3.1 4 3.1 -0.133349565782
3.1 4 4.1 -0.228563754423
4.1 0 0.1 4202.0
4.1 0 1.1 2.65740045079
4.1 0 2.1 -0.0462153115214
4.1 0 3.1 -0.358933906213
4.1 0 4.1 -0.439024390244
4.1 1 0.1 -1.11538537794e-05
4.1 1 1.1 -0.0144619860317
4.1 1 2.1 -0.0868190343718
4.1 1 3.1 -0.203767982755
4.1 1 4.1 -0.308519215265
4.1 2 0.1 -6.50646078271e-06
4.1 2 1.1 -0.0085156584289
4.1 2 2.1 -0.0538784714494
4.1 2 3.1 -0.140215240068
4.1 2 4.1 -0.23746380125
4.1 3 0.1 -4.54421180079e-06
4.1 3 1.1 -0.00597669061814
4.1 3 2.1 -0.038839789599
4.1 3 3.1 -0.106675396816
4.1 3 4.1 -0.192922262523
4.1 4 0.1 -3.48562423225e-06
4.1 4 1.1 -0.00459693165308
4.1 4 2.1 -0.0303305231375
4.1 4 3.1 -0.0860368842133
4.1 4 4.1 -0.162420599686

Решение исходной задачи:

# Python-matplotlib Commands
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
Gx, Gy = np.gradient(Z) # gradients with respect to x and y
G = (Gx**2+Gy**2)**.5  # gradient magnitude
N = G/G.max()  # normalize 0..1
surf = ax.plot_surface(
    X, Y, Z, rstride=1, cstride=1,
    facecolors=cm.jet(N),
    linewidth=0, antialiased=False, shade=False)
plt.show()

Насколько я могу судить, и это относится ко всем matplotlib-demos, переменные X, Y и Z хорошо подготовлены. В практических случаях это не всегда так.

Идеи, как повторно использовать данное решение с произвольными данными?

Ответ 1

Отличный вопрос, Тенгис, все математики любят демонстрировать яркие поверхностные графики с данными функциями, не обращая внимания на данные реального мира. В приведенном вами примере кода используются градиенты, поскольку отношения переменных моделируются с использованием функций. Для этого примера я буду генерировать случайные данные, используя стандартное нормальное распределение.

В любом случае, вот как вы можете быстро построить 4D случайные (произвольные) данные с первыми тремя переменными на оси, а четвертая - с цветом:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.random.standard_normal(100)
y = np.random.standard_normal(100)
z = np.random.standard_normal(100)
c = np.random.standard_normal(100)

img = ax.scatter(x, y, z, c=c, cmap=plt.hot())
fig.colorbar(img)
plt.show()

Примечание. Тепловая карта с горячей цветовой схемой (от желтого до красного) использовалась для 4-го измерения

Результат:

]1

Ответ 2

Я знаю, что вопрос очень старый, но я хотел бы представить эту альтернативу, где вместо использования "графика рассеяния" у нас есть трехмерная диаграмма поверхности, где цвета основаны на 4-м измерении. Лично я не вижу пространственной связи в случае "графика рассеяния", и поэтому использование трехмерной поверхности помогает мне легче понять графику.

Основная идея аналогична принятому ответу, но у нас есть трехмерный график поверхности, который позволяет визуально лучше видеть расстояние между точками. Следующий код в основном основан на ответе, заданном на этот вопрос.

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri

# The values ​​related to each point. This can be a "Dataframe pandas" 
# for example where each column is linked to a variable <-> 1 dimension. 
# The idea is that each line = 1 pt in 4D.
do_random_pt_example = True;

index_x = 0; index_y = 1; index_z = 2; index_c = 3;
list_name_variables = ['x', 'y', 'z', 'c'];
name_color_map = 'seismic';

if do_random_pt_example:
    number_of_points = 200;
    x = np.random.rand(number_of_points);
    y = np.random.rand(number_of_points);
    z = np.random.rand(number_of_points);
    c = np.random.rand(number_of_points);
else:
    # Example where we have a "Pandas Dataframe" where each line = 1 pt in 4D.
    # We assume here that the "data frame" "df" has already been loaded before.
    x = df[list_name_variables[index_x]]; 
    y = df[list_name_variables[index_y]]; 
    z = df[list_name_variables[index_z]]; 
    c = df[list_name_variables[index_c]];
#end
#-----

# We create triangles that join 3 pt at a time and where their colors will be
# determined by the values ​​of their 4th dimension. Each triangle contains 3
# indexes corresponding to the line number of the points to be grouped. 
# Therefore, different methods can be used to define the value that 
# will represent the 3 grouped points and I put some examples.
triangles = mtri.Triangulation(x, y).triangles;

choice_calcuation_colors = 1;
if choice_calcuation_colors == 1: # Mean of the "c" values of the 3 pt of the triangle
    colors = np.mean( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
elif choice_calcuation_colors == 2: # Mediane of the "c" values of the 3 pt of the triangle
    colors = np.median( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
elif choice_calcuation_colors == 3: # Max of the "c" values of the 3 pt of the triangle
    colors = np.max( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
#end
#----------
# Displays the 4D graphic.
fig = plt.figure();
ax = fig.gca(projection='3d');
triang = mtri.Triangulation(x, y, triangles);
surf = ax.plot_trisurf(triang, z, cmap = name_color_map, shade=False, linewidth=0.2);
surf.set_array(colors); surf.autoscale();

#Add a color bar with a title to explain which variable is represented by the color.
cbar = fig.colorbar(surf, shrink=0.5, aspect=5);
cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_ylabel(list_name_variables[index_c], rotation = 270);

# Add titles to the axes and a title in the figure.
ax.set_xlabel(list_name_variables[index_x]); ax.set_ylabel(list_name_variables[index_y]);
ax.set_zlabel(list_name_variables[index_z]);
plt.title('%s in function of %s, %s and %s' % (list_name_variables[index_c], list_name_variables[index_x], list_name_variables[index_y], list_name_variables[index_z]) );

plt.show();

Example of result with random values

Другое решение для случая, когда мы абсолютно хотим иметь исходные значения 4-го измерения для каждой точки, - это просто использовать "график рассеяния" в сочетании с трехмерной диаграммой поверхности, которая просто свяжет их, чтобы помочь вам увидеть расстояния между им.

name_color_map_surface = 'Greens';  # Colormap for the 3D surface only.

fig = plt.figure(); 
ax = fig.add_subplot(111, projection='3d');
ax.set_xlabel(list_name_variables[index_x]); ax.set_ylabel(list_name_variables[index_y]);
ax.set_zlabel(list_name_variables[index_z]);
plt.title('%s in fcn of %s, %s and %s' % (list_name_variables[index_c], list_name_variables[index_x], list_name_variables[index_y], list_name_variables[index_z]) );

# In this case, we will have 2 color bars: one for the surface and another for 
# the "scatter plot".
# For example, we can place the second color bar under or to the left of the figure.
choice_pos_colorbar = 2;

#The scatter plot.
img = ax.scatter(x, y, z, c = c, cmap = name_color_map);
cbar = fig.colorbar(img, shrink=0.5, aspect=5); # Default location is at the 'right' of the figure.
cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_ylabel(list_name_variables[index_c], rotation = 270);

# The 3D surface that serves only to connect the points to help visualize 
# the distances that separates them.
# The "alpha" is used to have some transparency in the surface.
surf = ax.plot_trisurf(x, y, z, cmap = name_color_map_surface, linewidth = 0.2, alpha = 0.25);

# The second color bar will be placed at the left of the figure.
if choice_pos_colorbar == 1: 
    #I am trying here to have the two color bars with the same size even if it 
    #is currently set manually.
    cbaxes = fig.add_axes([1-0.78375-0.1, 0.3025, 0.0393823, 0.385]);  # Case without tigh layout.
    #cbaxes = fig.add_axes([1-0.844805-0.1, 0.25942, 0.0492187, 0.481161]); # Case with tigh layout.

    cbar = plt.colorbar(surf, cax = cbaxes, shrink=0.5, aspect=5);
    cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_ylabel(list_name_variables[index_z], rotation = 90);

# The second color bar will be placed under the figure.
elif choice_pos_colorbar == 2: 
    cbar = fig.colorbar(surf, shrink=0.75, aspect=20,pad = 0.05, orientation = 'horizontal');
    cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_xlabel(list_name_variables[index_z], rotation = 0);
#end
plt.show();

Sample result for this second method with random values

Наконец, также возможно использовать "plot_surface", где мы определяем цвет, который будет использоваться для каждого лица. В таком случае, когда у нас есть 1 вектор значений на измерение, проблема в том, что мы должны интерполировать значения, чтобы получить 2D сетки. В случае интерполяции 4-го измерения он будет определяться только в соответствии с X-Y и Z не будет учитываться. В результате цвета представляют C (x, y) вместо C (x, y, z). Следующий код в основном основан на следующих ответах: plot_surface с одномерным вектором для каждого измерения; plot_surface с выбранным цветом для каждой поверхности. Обратите внимание, что по сравнению с предыдущими решениями расчет довольно сложный, и отображение может занять некоторое время.

import matplotlib
from scipy.interpolate import griddata

# X-Y are transformed into 2D grids. It like a form of interpolation
x1 = np.linspace(x.min(), x.max(), len(np.unique(x))); 
y1 = np.linspace(y.min(), y.max(), len(np.unique(y)));
x2, y2 = np.meshgrid(x1, y1);

# Interpolation of Z: old X-Y to the new X-Y grid.
# Note: Sometimes values ​​can be < z.min and so it may be better to set 
# the values too low to the true minimum value.
z2 = griddata( (x, y), z, (x2, y2), method='cubic', fill_value = 0);
z2[z2 < z.min()] = z.min();

# Interpolation of C: old X-Y on the new X-Y grid (as we did for Z)
# The only problem is the fact that the interpolation of C does not take
# into account Z and that, consequently, the representation is less 
# valid compared to the previous solutions.
c2 = griddata( (x, y), c, (x2, y2), method='cubic', fill_value = 0);
c2[c2 < c.min()] = c.min(); 

#--------
color_dimension = c2; # It must be in 2D - as for "X, Y, Z".
minn, maxx = color_dimension.min(), color_dimension.max();
norm = matplotlib.colors.Normalize(minn, maxx);
m = plt.cm.ScalarMappable(norm=norm, cmap = name_color_map);
m.set_array([]);
fcolors = m.to_rgba(color_dimension);

# At this time, X-Y-Z-C are all 2D and we can use "plot_surface".
fig = plt.figure(); ax = fig.gca(projection='3d');
surf = ax.plot_surface(x2, y2, z2, facecolors = fcolors, linewidth=0, rstride=1, cstride=1,
                       antialiased=False);
cbar = fig.colorbar(m, shrink=0.5, aspect=5);
cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_ylabel(list_name_variables[index_c], rotation = 270);
ax.set_xlabel(list_name_variables[index_x]); ax.set_ylabel(list_name_variables[index_y]);
ax.set_zlabel(list_name_variables[index_z]);
plt.title('%s in fcn of %s, %s and %s' % (list_name_variables[index_c], list_name_variables[index_x], list_name_variables[index_y], list_name_variables[index_z]) );
plt.show();

Example of result with randoms values for this third solution

Ответ 3

Одна из возможностей - использовать цветовое пространство, например RGBA или HSVA, они 4-мерные, но отображение альфа-прозрачности может быть проблемой.

Другая возможность - это динамический сюжет с ползунком. Один из размеров будет представлен слайдером.

Я не уверен, что это то, о чем вы просите.