Создать новый столбец с инкрементными значениями эффективно

Я создаю столбец с инкрементными значениями, а затем добавляю строку в начале столбца. При использовании на больших данных это происходит очень медленно. Пожалуйста, предложите более быстрый и эффективный способ для этого.

df['New_Column'] = np.arange(df[0])+1
df['New_Column'] = 'str' + df['New_Column'].astype(str)

вход

id  Field   Value
1     A       1
2     B       0     
3     D       1

Выход

id  Field   Value   New_Column
1     A       1     str_1
2     B       0     str_2
3     D       1     str_3

Ответ 1

Я добавлю еще два в миксе

Numpy

from numpy.core.defchararray import add

df.assign(new=add('str_', np.arange(1, len(df) + 1).astype(str)))

   id Field  Value    new
0   1     A      1  str_1
1   2     B      0  str_2
2   3     D      1  str_3

f-string в понимании

Python 3. 6+
df.assign(new=[f'str_{i}' for i in range(1, len(df) + 1)])

   id Field  Value    new
0   1     A      1  str_1
1   2     B      0  str_2
2   3     D      1  str_3

Тест времени

Выводы

Понимание выигрывает день с успеваемостью относительно простоты. Имейте в виду, это был предложенный метод. Я очень благодарен вам (спасибо), но позвольте отдать должное.

Китонизировать понимание, похоже, не помогло. Не было f-струн.
Divakar numexp выходит на первое место для производительности по сравнению с более крупными данными.

функции

%load_ext Cython

%%cython
def gen_list(l, h):
    return ['str_%s' % i for i in range(l, h)]

pir1 = lambda d: d.assign(new=[f'str_{i}' for i in range(1, len(d) + 1)])
pir2 = lambda d: d.assign(new=add('str_', np.arange(1, len(d) + 1).astype(str)))
cld1 = lambda d: d.assign(new=['str_%s' % i for i in range(1, len(d) + 1)])
cld2 = lambda d: d.assign(new=gen_list(1, len(d) + 1))
jez1 = lambda d: d.assign(new='str_' + pd.Series(np.arange(1, len(d) + 1), d.index).astype(str))
div1 = lambda d: d.assign(new=create_inc_pattern(prefix_str='str_', start=1, stop=len(d) + 1))
div2 = lambda d: d.assign(new=create_inc_pattern_numexpr(prefix_str='str_', start=1, stop=len(d) + 1))

тестирование

res = pd.DataFrame(
    np.nan, [10, 30, 100, 300, 1000, 3000, 10000, 30000],
    'pir1 pir2 cld1 cld2 jez1 div1 div2'.split()
)

for i in res.index:
    d = pd.concat([df] * i)
    for j in res.columns:
        stmt = f'{j}(d)'
        setp = f'from __main__ import {j}, d'
        res.at[i, j] = timeit(stmt, setp, number=200)

Результаты

res.plot(loglog=True)

enter image description here

res.div(res.min(1), 0)

           pir1      pir2      cld1      cld2       jez1      div1      div2
10     1.243998  1.137877  1.006501  1.000000   1.798684  1.277133  1.427025
30     1.009771  1.144892  1.012283  1.000000   2.144972  1.210803  1.283230
100    1.090170  1.567300  1.039085  1.000000   3.134154  1.281968  1.356706
300    1.061804  2.260091  1.072633  1.000000   4.792343  1.051886  1.305122
1000   1.135483  3.401408  1.120250  1.033484   7.678876  1.077430  1.000000
3000   1.310274  5.179131  1.359795  1.362273  13.006764  1.317411  1.000000
10000  2.110001  7.861251  1.942805  1.696498  17.905551  1.974627  1.000000
30000  2.188024  8.236724  2.100529  1.872661  18.416222  1.875299  1.000000

Дополнительные функции

def create_inc_pattern(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(N+1))) # width of numeral part in string
    dl = len(prefix_str)+W # datatype length
    dt = np.uint8 # int datatype for string to-from conversion 

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]

    r = np.arange(start, stop)

    addn = (r[:,None] // 10**np.arange(W-1,-1,-1))%10
    a1 = np.repeat(a0[None],N,axis=0)
    a1[:,len(prefix_str):] += addn.astype(dt)
    a1.shape = (-1)

    a2 = np.zeros((len(a1),4),dtype=dt)
    a2[:,0] = a1
    return np.frombuffer(a2.ravel(), dtype='U'+str(dl))

import numexpr as ne

def create_inc_pattern_numexpr(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(N+1))) # width of numeral part in string
    dl = len(prefix_str)+W # datatype length
    dt = np.uint8 # int datatype for string to-from conversion 

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]

    r = np.arange(start, stop)

    r2D = r[:,None]
    s = 10**np.arange(W-1,-1,-1)
    addn = ne.evaluate('(r2D/s)%10')
    a1 = np.repeat(a0[None],N,axis=0)
    a1[:,len(prefix_str):] += addn.astype(dt)
    a1.shape = (-1)

    a2 = np.zeros((len(a1),4),dtype=dt)
    a2[:,0] = a1
    return np.frombuffer(a2.ravel(), dtype='U'+str(dl))

Ответ 2

Когда все остальное не удается, используйте понимание списка:

df['NewColumn'] = ['str_%s' %i for i in range(1, len(df) + 1)]

Дополнительные ускорения возможны, если вы cythonize своей функции:

%load_ext Cython

%%cython
def gen_list(l, h):
    return ['str_%s' %i for i in range(l, h)]

Обратите внимание: этот код запускается на Python3.6.0 (IPython6.2.1). Решение улучшилось благодаря @hpaulj в комментариях.


# @jezrael fastest solution

%%timeit
df['NewColumn'] = np.arange(len(df['a'])) + 1
df['NewColumn'] = 'str_' + df['New_Column'].map(str)

547 ms ± 13.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

# in this post - no cython

%timeit df['NewColumn'] = ['str_%s'%i for i in range(n)]
409 ms ± 9.36 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

# cythonized list comp 

%timeit df['NewColumn'] = gen_list(1, len(df) + 1)
370 ms ± 9.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Ответ 3

Предложил подход

Немного поработав с строковыми и числовыми типами данных и используя легкую интероперабельность между ними, вот что-то, что я закончил, чтобы получить нулевые проложенные строки, поскольку NumPy преуспевает и позволяет таким образом векторизовать операции -

def create_inc_pattern(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(stop+1))) # width of numeral part in string

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]
    a1 = np.repeat(a0[None],N,axis=0)

    r = np.arange(start, stop)
    addn = (r[:,None] // 10**np.arange(W-1,-1,-1))%10
    a1[:,len(prefix_str):] += addn.astype(a1.dtype)
    return a1.view('S'+str(a1.shape[1])).ravel()

Brining in numexpr для более быстрого вещания + модуль -

import numexpr as ne

def create_inc_pattern_numexpr(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(stop+1))) # width of numeral part in string

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]
    a1 = np.repeat(a0[None],N,axis=0)

    r = np.arange(start, stop)
    r2D = r[:,None]
    s = 10**np.arange(W-1,-1,-1)
    addn = ne.evaluate('(r2D/s)%10')
    a1[:,len(prefix_str):] += addn.astype(a1.dtype)
    return a1.view('S'+str(a1.shape[1])).ravel()

Итак, чтобы использовать в качестве нового столбца:

df['New_Column'] = create_inc_pattern(prefix_str='str_', start=1, stop=len(df)+1)

Образцы прогона -

In [334]: create_inc_pattern_numexpr(prefix_str='str_', start=1, stop=14)
Out[334]: 
array(['str_01', 'str_02', 'str_03', 'str_04', 'str_05', 'str_06',
       'str_07', 'str_08', 'str_09', 'str_10', 'str_11', 'str_12', 'str_13'], 
      dtype='|S6')

In [338]: create_inc_pattern(prefix_str='str_', start=1, stop=124)
Out[338]: 
array(['str_001', 'str_002', 'str_003', 'str_004', 'str_005', 'str_006',
       'str_007', 'str_008', 'str_009', 'str_010', 'str_011', 'str_012',..
       'str_115', 'str_116', 'str_117', 'str_118', 'str_119', 'str_120',
       'str_121', 'str_122', 'str_123'], 
      dtype='|S7')

объяснение

Основная идея и объяснение с пошаговым пробором проб

Основная идея заключается в создании ASCII эквивалентного числового массива, который может быть просмотрен или преобразован преобразованием dtype в строку. Чтобы быть более конкретным, мы будем создавать цифры типа uint8. Таким образом, каждая строка будет представлена 1D массивом цифр. Список строк, которые будут переведены на двумерный массив цифр с каждой строкой (1D-массив), представляющей одну строку.

1) Входы:

In [22]: prefix_str='str_'
    ...: start=15
    ...: stop=24

2) Параметры:

In [23]: N = stop - start # count of numbers
    ...: W = int(np.ceil(np.log10(stop+1))) # width of numeral part in string

In [24]: N,W
Out[24]: (9, 2)

3) Создайте 1D массив цифр, представляющих начальную строку:

In [25]: padv = np.full(W,48,dtype=np.uint8)
    ...: a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]

In [27]: a0
Out[27]: array([115, 116, 114,  95,  48,  48], dtype=uint8)

4) Расширить, чтобы охватить диапазон строк как 2D-массив:

In [33]: a1 = np.repeat(a0[None],N,axis=0)
    ...: r = np.arange(start, stop)
    ...: addn = (r[:,None] // 10**np.arange(W-1,-1,-1))%10
    ...: a1[:,len(prefix_str):] += addn.astype(a1.dtype)

In [34]: a1
Out[34]: 
array([[115, 116, 114,  95,  49,  53],
       [115, 116, 114,  95,  49,  54],
       [115, 116, 114,  95,  49,  55],
       [115, 116, 114,  95,  49,  56],
       [115, 116, 114,  95,  49,  57],
       [115, 116, 114,  95,  50,  48],
       [115, 116, 114,  95,  50,  49],
       [115, 116, 114,  95,  50,  50],
       [115, 116, 114,  95,  50,  51]], dtype=uint8)

5) Таким образом, каждая строка представляет собой ascii-эквивалент строки, каждый из которых имеет желаемый результат. Позвольте получить его с заключительным шагом:

In [35]: a1.view('S'+str(a1.shape[1])).ravel()
Out[35]: 
array(['str_15', 'str_16', 'str_17', 'str_18', 'str_19', 'str_20',
       'str_21', 'str_22', 'str_23'], 
      dtype='|S6')

Задержки

Здесь быстрый тест времени против версии списка, которая, кажется, работает лучше всего смотря на тайминги из других сообщений -

In [339]: N = 10000

In [340]: %timeit ['str_%s'%i for i in range(N)]
1000 loops, best of 3: 1.12 ms per loop

In [341]: %timeit create_inc_pattern_numexpr(prefix_str='str_', start=1, stop=N)
1000 loops, best of 3: 490 µs per loop

In [342]: N = 100000

In [343]: %timeit ['str_%s'%i for i in range(N)]
100 loops, best of 3: 14 ms per loop

In [344]: %timeit create_inc_pattern_numexpr(prefix_str='str_', start=1, stop=N)
100 loops, best of 3: 4 ms per loop

Коды Python-3

На Python-3, чтобы получить массив dtype строки, нам понадобилось проложить еще несколько нулей в промежуточном массиве int dtype. Таким образом, эквивалент без и с версиями numexpr для Python-3 оказался чем-то вроде этого -

Метод №1 (нет numexpr):

def create_inc_pattern(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(stop+1))) # width of numeral part in string
    dl = len(prefix_str)+W # datatype length
    dt = np.uint8 # int datatype for string to-from conversion 

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]

    r = np.arange(start, stop)

    addn = (r[:,None] // 10**np.arange(W-1,-1,-1))%10
    a1 = np.repeat(a0[None],N,axis=0)
    a1[:,len(prefix_str):] += addn.astype(dt)
    a1.shape = (-1)

    a2 = np.zeros((len(a1),4),dtype=dt)
    a2[:,0] = a1
    return np.frombuffer(a2.ravel(), dtype='U'+str(dl))

Способ № 2 (с numexpr):

import numexpr as ne

def create_inc_pattern_numexpr(prefix_str, start, stop):
    N = stop - start # count of numbers
    W = int(np.ceil(np.log10(stop+1))) # width of numeral part in string
    dl = len(prefix_str)+W # datatype length
    dt = np.uint8 # int datatype for string to-from conversion 

    padv = np.full(W,48,dtype=np.uint8)
    a0 = np.r_[np.fromstring(prefix_str,dtype='uint8'), padv]

    r = np.arange(start, stop)

    r2D = r[:,None]
    s = 10**np.arange(W-1,-1,-1)
    addn = ne.evaluate('(r2D/s)%10')
    a1 = np.repeat(a0[None],N,axis=0)
    a1[:,len(prefix_str):] += addn.astype(dt)
    a1.shape = (-1)

    a2 = np.zeros((len(a1),4),dtype=dt)
    a2[:,0] = a1
    return np.frombuffer(a2.ravel(), dtype='U'+str(dl))

Сроки -

In [8]: N = 100000

In [9]: %timeit ['str_%s'%i for i in range(N)]
100 loops, best of 3: 18.5 ms per loop

In [10]: %timeit create_inc_pattern_numexpr(prefix_str='str_', start=1, stop=N)
100 loops, best of 3: 6.06 ms per loop

Ответ 4

Одним из возможных решений является преобразование значений в string по map:

df['New_Column'] = np.arange(len(df['a']))+1
df['New_Column'] = 'str_' + df['New_Column'].map(str)