Суммируя несколько столбцов с dplyr?

Я немного борюсь с dplyr-синтаксисом. У меня есть кадр данных с разными переменными и одна переменная группировки. Теперь я хочу рассчитать среднее значение для каждого столбца в каждой группе, используя dplyr в R.

df <- data.frame(a=sample(1:5, 10, replace=T), 
             b=sample(1:5, 10, replace=T), 
             c=sample(1:5, 10, replace=T), 
             d=sample(1:5, 10, replace=T), 
             grp=sample(1:3, 10, replace=T))
df %>% group_by(grp) %>% summarise(mean(a))

Это дает мне значение для столбца "a" для каждой группы, обозначенной "grp".

Мой вопрос: возможно ли сразу получить средства для каждого столбца в каждой группе? Или мне нужно повторять df %>% group_by(grp) %>% summarise(mean(a)) для каждого столбца?

То, что я хотел бы иметь, это что-то вроде

df %>% group_by(grp) %>% summarise(mean(a:d)) # "mean(a:d)" does not work

Ответ 1

dplyr 0.2 содержит summarise_each для этой цели:

df %>% group_by(grp) %>% summarise_each(funs(mean))
#> Source: local data frame [3 x 5]
#> 
#>     grp        a        b        c        d
#>   (int)    (dbl)    (dbl)    (dbl)    (dbl)
#> 1     1 3.000000 2.666667 2.666667 3.333333
#> 2     2 2.666667 2.666667 2.500000 2.833333
#> 3     3 4.000000 1.000000 4.000000 3.000000

В качестве альтернативы пакет purrr предоставляет ту же функциональность:

df %>% slice_rows("grp") %>% dmap(mean)
#> Source: local data frame [3 x 5]
#> 
#>     grp        a        b        c        d
#>   (int)    (dbl)    (dbl)    (dbl)    (dbl)
#> 1     1 3.000000 2.666667 2.666667 3.333333
#> 2     2 2.666667 2.666667 2.500000 2.833333
#> 3     3 4.000000 1.000000 4.000000 3.000000

Также не забывайте о data.table:

setDT(df)[, lapply(.SD, mean), by = grp]
#>    grp        a        b        c        d
#> 1:   3 3.714286 3.714286 2.428571 2.428571
#> 2:   1 1.000000 4.000000 5.000000 2.000000
#> 3:   2 4.000000 4.500000 3.000000 3.000000

Ответ 2

Мы можем суммировать, используя summarize_at, summarize_all и summarize_if на dplyr 0.7.4. Мы можем установить несколько столбцов и функций, используя аргументы vars и funs, как показано ниже. Левая часть формулы funs присваивается суффиксу суммированных vars. В dplyr 0.7.4, summarise_eachmutate_each) уже устарели, поэтому мы не можем использовать эти функции.

options(scipen = 100, dplyr.width = Inf, dplyr.print_max = Inf)

library(dplyr)
packageVersion("dplyr")
# [1] ‘0.7.4’

set.seed(123)
df <- data_frame(
  a = sample(1:5, 10, replace=T), 
  b = sample(1:5, 10, replace=T), 
  c = sample(1:5, 10, replace=T), 
  d = sample(1:5, 10, replace=T), 
  grp = as.character(sample(1:3, 10, replace=T)) # For convenience, specify character type
)

df %>% group_by(grp) %>% 
  summarise_each(.vars = letters[1:4],
                 .funs = c(mean="mean"))
# `summarise_each()` is deprecated.
# Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.
# To map `funs` over a selection of variables, use `summarise_at()`
# Error: Strings must match column names. Unknown columns: mean

Вы должны перейти к следующему коду. Следующие коды имеют одинаковый результат.

# summarise_at
df %>% group_by(grp) %>% 
  summarise_at(.vars = letters[1:4],
               .funs = c(mean="mean"))

df %>% group_by(grp) %>% 
  summarise_at(.vars = names(.)[1:4],
               .funs = c(mean="mean"))

df %>% group_by(grp) %>% 
  summarise_at(.vars = vars(a,b,c,d),
               .funs = c(mean="mean"))

# summarise_all
df %>% group_by(grp) %>% 
  summarise_all(.funs = c(mean="mean"))

# summarise_if
df %>% group_by(grp) %>% 
  summarise_if(.predicate = function(x) is.numeric(x),
               .funs = funs(mean="mean"))
# A tibble: 3 x 5
# grp a_mean b_mean c_mean d_mean
# <chr>  <dbl>  <dbl>  <dbl>  <dbl>
# 1     1   2.80   3.00    3.6   3.00
# 2     2   4.25   2.75    4.0   3.75
# 3     3   3.00   5.00    1.0   2.00

Вы также можете иметь несколько функций.

df %>% group_by(grp) %>% 
  summarise_at(.vars = letters[1:2],
               .funs = c(Mean="mean", Sd="sd"))
# A tibble: 3 x 5
# grp a_Mean b_Mean      a_Sd     b_Sd
# <chr>  <dbl>  <dbl>     <dbl>    <dbl>
# 1     1   2.80   3.00 1.4832397 1.870829
# 2     2   4.25   2.75 0.9574271 1.258306
# 3     3   3.00   5.00        NA       NA

Ответ 3

Вы можете просто передать больше аргументов summarise:

df %>% group_by(grp) %>% summarise(mean(a), mean(b), mean(c), mean(d))

Источник: локальный фрейм данных [3 x 5]

  grp  mean(a)  mean(b)  mean(c) mean(d)
1   1 2.500000 3.500000 2.000000     3.0
2   2 3.800000 3.200000 3.200000     2.8
3   3 3.666667 3.333333 2.333333     3.0

Ответ 4

Для полноты: с dplyr v0.2 ddply с colwise также будет делать следующее:

> ddply(df, .(grp), colwise(mean))
  grp        a    b        c        d
1   1 4.333333 4.00 1.000000 2.000000
2   2 2.000000 2.75 2.750000 2.750000
3   3 3.000000 4.00 4.333333 3.666667

но он медленнее, по крайней мере в этом случае:

> microbenchmark(ddply(df, .(grp), colwise(mean)), 
                  df %>% group_by(grp) %>% summarise_each(funs(mean)))
Unit: milliseconds
                                            expr      min       lq     mean
                ddply(df, .(grp), colwise(mean))     3.278002 3.331744 3.533835
 df %>% group_by(grp) %>% summarise_each(funs(mean)) 1.001789 1.031528 1.109337

   median       uq      max neval
 3.353633 3.378089 7.592209   100
 1.121954 1.133428 2.292216   100

Ответ 5

Все примеры замечательные, но я полагаю, что добавлю еще одно, чтобы показать, как упрощается работа в "аккуратном" формате. Прямо сейчас кадр данных находится в "широком" формате, что означает, что переменные "a" через "d" представлены в столбцах. Чтобы перейти в "аккуратный" (или длинный) формат, вы можете использовать gather() из пакета tidyr, который перемещает переменные в столбцах от "a" до "d" в строки. Затем вы используете функции group_by() и summarize(), чтобы получить среднее значение для каждой группы. Если вы хотите представить данные в широком формате, просто нажмите на дополнительный вызов функции spread().


library(tidyverse)

# Create reproducible df
set.seed(101)
df <- tibble(a   = sample(1:5, 10, replace=T), 
             b   = sample(1:5, 10, replace=T), 
             c   = sample(1:5, 10, replace=T), 
             d   = sample(1:5, 10, replace=T), 
             grp = sample(1:3, 10, replace=T))

# Convert to tidy format using gather
df %>%
    gather(key = variable, value = value, a:d) %>%
    group_by(grp, variable) %>%
    summarize(mean = mean(value)) %>%
    spread(variable, mean)
#> Source: local data frame [3 x 5]
#> Groups: grp [3]
#> 
#>     grp        a     b        c        d
#> * <int>    <dbl> <dbl>    <dbl>    <dbl>
#> 1     1 3.000000   3.5 3.250000 3.250000
#> 2     2 1.666667   4.0 4.666667 2.666667
#> 3     3 3.333333   3.0 2.333333 2.333333