График графика с несколькими атрибутами, похожими на "оттенок" в Сиборне

У меня есть следующий набор данных примеров, называемый df, где время этапа - сколько дней, чтобы добраться туда:

id stage1_time stage_1_to_2_time stage_2_time stage_2_to_3_time stage3_time
a  10          30                40           30                70
b  30               
c  15          30                45     
d       

Я написал следующий скрипт, чтобы получить график рассеяния stage1_time против CDF:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats

dict = {'id': id, 'stage_1_time': [10, 30, 15, None], 'stage_1_to_2_time': [30, None, 30, None], 'stage_2_time' : [40, None, 45, None],'stage_2_to_3_time' : [30, None, None, None],'stage_3_time' : [70, None, None, None]}
df = pd.DataFrame(dict)

#create eCDF function
def ecdf(df):
    n = len(df)
    x = np.sort(df)
    y = np.arange(1.0, n+1) / n
    return x, y

def generate_scatter_plot(df):

    x, y = ecdf(df)

    plt.plot(x, y, marker='.', linestyle='none') 
    plt.axvline(x.mean(), color='gray', linestyle='dashed', linewidth=2) #Add mean

    x_m = int(x.mean())
    y_m = stats.percentileofscore(df.as_matrix(), x.mean())/100.0

    plt.annotate('(%s,%s)' % (x_m,int(y_m*100)) , xy=(x_m,y_m), xytext=(10,-5), textcoords='offset points')

    percentiles= np.array([0,25,50,75,100])
    x_p = np.percentile(df, percentiles)
    y_p = percentiles/100.0

    plt.plot(x_p, y_p, marker='D', color='red', linestyle='none') # Overlay quartiles

    for x,y in zip(x_p, y_p):                                        
        plt.annotate('%s' % int(x), xy=(x,y), xytext=(10,-5), textcoords='offset points')

#Data to plot
stage1_time = df['stage_1_time'].dropna().sort_values()

#Scatter Plot
stage1_time_scatter = generate_scatter_plot(pd.DataFrame({"df" : stage1_time.as_matrix()}))
plt.title('Scatter Plot of Days to Stage1')
plt.xlabel('Days to Stage1')
plt.ylabel('Cumulative Probability')
plt.legend(('Days to Stage1', "Mean", 'Quartiles'), loc='lower right')
plt.margins(0.02)

plt.show()

Выход:

enter image description here

В настоящее время у меня есть количество дней, в течение которых все, кто достиг stage1 откладывали свою кумулятивную вероятность, однако я пытаюсь добиться того, что разброс имеет три цвета, когда я замышляю: те, кто достиг stage1 и остались там, те, кто перешел на stage2, и тех, кто перешел на stage3. Мне также stage3 подсчеты для данных на графике: # в stage1, # в stage2 и # в stage3.

Может ли кто-нибудь помочь с получением там, пожалуйста?

FYI, намерение использовать это как базу, чтобы я мог также создать график для stage2_time, где те, которые достигают stage_3, выделяются другим цветом.

Ответ 1

Вы можете создать новый столбец и использовать его для хранения финальной стадии, а затем использовать этот новый столбец для окраски вашего сюжета.

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import math

dict = {'id': id, 'Progressive_time': [10, 30, 15, None],'stage_1_to_2_time': [30, None, 30, None], 'Active_time' : [40,None, 45, None],'stage_2_to_3_time' : [30, None, None,None],'Engaged_time' : [70, None, None, None]}
df = pd.DataFrame(dict)

    #create eCDF function
def ecdf(df, serie):
    n = len(df)
    df['x'] = np.sort(df[serie])
    df['y'] = np.arange(1.0, n+1) / n
    return df

def generate_scatter_plot(df,serie,nb_stage):
    df=df.dropna(subset=[serie]).sort_values(by=[serie])
    st=1
    for i in range(1,nb_stage*2,2):
        df.loc[df.iloc[:,i].notnull(),'stage']=st
        st=st+1

    df= ecdf(df, serie)
    plt.plot(df.loc[df['stage'] == 1, 'x'], df.loc[df['stage'] == 1, 'y'], marker='.', linestyle='none',c='blue') 
    plt.plot(df.loc[df['stage'] == 2, 'x'], df.loc[df['stage'] == 2, 'y'], marker='.', linestyle='none',c='red') 
    plt.plot(df.loc[df['stage'] == 3, 'x'], df.loc[df['stage'] == 3, 'y'], marker='.', linestyle='none',c='green') 
    plt.axvline(df['x'].mean(), color='gray', linestyle='dashed', linewidth=2) #Add mean


    x_m = int(df['x'].mean())
    y_m = stats.percentileofscore(df[serie], df['x'].mean())/100.0

    plt.annotate('(%s,%s)' % (x_m,int(y_m*100)) , xy=(x_m,y_m), xytext=(10,-5), textcoords='offset points')

    percentiles= np.array([0,25,50,75,100])
    x_p = np.percentile(df[serie], percentiles)
    y_p = percentiles/100.0

    plt.plot(x_p, y_p, marker='D', color='red', linestyle='none') # Overlay quartiles

    for x,y in zip(x_p, y_p):                                        
        plt.annotate('%s' % int(x), xy=(x,y), xytext=(10,-5), textcoords='offset points')

#Scatter Plot
stage1_time_scatter = generate_scatter_plot(df,'stage_1_time',3)
plt.title('Scatter Plot of Days to Stage1')
plt.xlabel('Days to Stage1')
plt.ylabel('Cumulative Probability')
plt.legend(('Progressive','Active','Engaged','Days to Stage1', "Mean", 'Quartiles'), loc='lower right')
plt.margins(0.02)

plt.show()