Im развертывание модели keras и отправка тестовых данных в модель через флягу api. У меня два файла:
Во-первых: My Flask App:
# Let startup the Flask application
app = Flask(__name__)
# Model reload from jSON:
print('Load model...')
json_file = open('models/model_temp.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
keras_model_loaded = model_from_json(loaded_model_json)
print('Model loaded...')
# Weights reloaded from .h5 inside the model
print('Load weights...')
keras_model_loaded.load_weights("models/Model_temp.h5")
print('Weights loaded...')
# URL that we'll use to make predictions using get and post
@app.route('/predict',methods=['GET','POST'])
def predict():
data = request.get_json(force=True)
predict_request = [data["month"],data["day"],data["hour"]]
predict_request = np.array(predict_request)
predict_request = predict_request.reshape(1,-1)
y_hat = keras_model_loaded.predict(predict_request, batch_size=1, verbose=1)
return jsonify({'prediction': str(y_hat)})
if __name__ == "__main__":
# Choose the port
port = int(os.environ.get('PORT', 9000))
# Run locally
app.run(host='127.0.0.1', port=port)
Второй: файл Im, используемый для отправки данных json, отправляемых в конечную точку api:
response = rq.get('api url has been removed')
data=response.json()
currentDT = datetime.datetime.now()
Month = currentDT.month
Day = currentDT.day
Hour = currentDT.hour
url= "http://127.0.0.1:9000/predict"
post_data = json.dumps({'month': month, 'day': day, 'hour': hour,})
r = rq.post(url,post_data)
Я получаю этот ответ от Flask относительно Tensorflow:
ValueError: Тензорный тензор ("dense_6/BiasAdd: 0", shape = (?, 1), dtype = float32) не является элементом этого графика.
Моя модель keras - это простая модель с 6 плотными слоями и поезда без ошибок.
Есть идеи?