Почему 2 * (i * i) быстрее, чем 2 * я * я в Java?

Следующая Java-программа работает в среднем от 0,50 до 0,55 с:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

Если я заменю 2 * (i * i) на 2 * i * i, запуск займет от 0,60 до 0,65 секунды. Как получилось?

Я запускал каждую версию программы 15 раз, чередуя их. Вот результаты:

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

Самый быстрый запуск 2 * i * i занял больше времени, чем самый медленный запуск 2 * (i * i). Если бы они оба были столь же эффективны, вероятность этого была бы менее 1/2 ^ 15 * 100% = 0,00305%.

Ответ 1

Существует небольшая разница в упорядочении байт-кода.

2 * (i * i):

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

vs 2 * я * i:

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

На первый взгляд это не должно иметь значения; если что-то вторая версия более оптимальна, так как она использует один слот меньше.

Поэтому нам нужно углубиться в нижний уровень (JIT) 1.

Помните, что JIT имеет тенденцию очень интенсивно разворачивать маленькие циклы. Действительно, мы наблюдаем 16-кратное разворачивание для случая 2 * (i * i):

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

Мы видим, что в стек есть один регистр, который "пролился".

И для версии 2 * я * i:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

Здесь мы наблюдаем гораздо больше "проливания" и большего доступа к стеку [RSP +...] из-за более промежуточных результатов, которые необходимо сохранить.

Таким образом, ответ на вопрос прост: 2 * (i * i) быстрее, чем 2 * я * i потому что JIT генерирует более оптимальный ассемблерный код для первого случая.


Но, конечно, очевидно, что ни первая, ни вторая версия не являются хорошими; цикл может действительно выиграть от векторизации, поскольку любой процессор x86-64 имеет как минимум поддержку SSE2.

Так что это проблема оптимизатора; как это часто бывает, он разворачивается слишком агрессивно и стреляет в ногу, все время упуская из виду другие возможности.

Фактически, современные процессоры x86-64 разбивают инструкции дальше на микрооперации (μops) и с такими функциями, как переименование регистров, μop-кэши и буферы контуров, оптимизация циклов требует гораздо большей аккуратности, чем простое развертывание для оптимальной производительности. Согласно руководству по оптимизации Agner Fog:

Увеличение производительности из-за кэша μop может быть довольно значительным, если средняя длина инструкции составляет более 4 байтов. Можно рассмотреть следующие методы оптимизации использования кэша μop:

  • Убедитесь, что критические циклы достаточно малы, чтобы вписаться в кэш-память.
  • Выровняйте самые критические записи цикла и записи функций на 32.
  • Избегайте излишней развертки цикла.
  • Избегайте инструкций с дополнительным временем загрузки
    , , ,

Что касается времени загрузки - даже самый быстрый L1D-хит стоит 4 цикла, дополнительный регистр и μop, так что да, даже несколько обращений к памяти могут повредить производительность в жестких циклах.

Но вернемся к возможности векторизации - чтобы увидеть, насколько быстро это возможно, мы можем скомпилировать аналогичное приложение C с GCC, которое прямо его векторизует (показан AVX2, SSE2 похож) 2:

  vmovdqa ymm0, YMMWORD PTR .LC0[rip]
  vmovdqa ymm3, YMMWORD PTR .LC1[rip]
  xor eax, eax
  vpxor xmm2, xmm2, xmm2
.L2:
  vpmulld ymm1, ymm0, ymm0
  inc eax
  vpaddd ymm0, ymm0, ymm3
  vpslld ymm1, ymm1, 1
  vpaddd ymm2, ymm2, ymm1
  cmp eax, 125000000      ; 8 calculations per iteration
  jne .L2
  vmovdqa xmm0, xmm2
  vextracti128 xmm2, ymm2, 1
  vpaddd xmm2, xmm0, xmm2
  vpsrldq xmm0, xmm2, 8
  vpaddd xmm0, xmm2, xmm0
  vpsrldq xmm1, xmm0, 4
  vpaddd xmm0, xmm0, xmm1
  vmovd eax, xmm0
  vzeroupper

С временем выполнения:

  • SSE: 0,24 с, или в 2 раза быстрее.
  • AVX: 0,15 с или в 3 раза быстрее.
  • AVX2: 0,08 с, или в 5 раз быстрее.

1Чтобы получить JIT-сборку сборки, получите отладочную JVM и запустите с помощью -XX:+PrintOptoAssembly

2Версия C скомпилирована с флагом -fwrapv, который позволяет GCC обрабатывать целочисленное переполнение со знаком целого в качестве обертки с двумя дополнениями.

Ответ 2

Когда умножение равно 2 * (i * i), JVM может разложить умножение на 2 из цикла, в результате чего этот эквивалентный, но более эффективный код:

int n = 0;
for (int i = 0; i < 1000000000; i++) {
    n += i * i;
}
n *= 2;

но когда умножение (2 * i) * i, JVM не оптимизирует его, так как умножение на константу уже не является правильным перед добавлением.

Вот несколько причин, почему я так думаю:

  • Добавление инструкции if (n == 0) n = 1 в начале цикла приводит к тому, что обе версии являются эффективными, поскольку размножение умножения больше не гарантирует, что результат будет таким же
  • Оптимизированная версия (путем умножения умножения на 2) выполняется точно так же, как версия 2 * (i * i)

Вот тестовый код, который я использовал для вывода этих выводов:

public static void main(String[] args) {
    long fastVersion = 0;
    long slowVersion = 0;
    long optimizedVersion = 0;
    long modifiedFastVersion = 0;
    long modifiedSlowVersion = 0;

    for (int i = 0; i < 10; i++) {
        fastVersion += fastVersion();
        slowVersion += slowVersion();
        optimizedVersion += optimizedVersion();
        modifiedFastVersion += modifiedFastVersion();
        modifiedSlowVersion += modifiedSlowVersion();
    }

    System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
    System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
    System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
    System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
    System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}

private static long fastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long slowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

private static long optimizedVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += i * i;
    }
    n *= 2;
    return System.nanoTime() - startTime;
}

private static long modifiedFastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long modifiedSlowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

И вот результаты:

Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s

Ответ 3

Байт-коды: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html Просмотр байтовых кодов: https://github.com/Konloch/bytecode-viewer

На моем JDK (Windows 10 64 бит, 1.8.0_65-b17) я могу воспроизвести и объяснить:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

Выход:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

Так почему? Байт-код такой:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

Разница в том, что: С скобками (2 * (i * i)):

  • push const stack
  • вставьте локально в стек
  • вставьте локально в стек
  • умножить вершину стека
  • умножить вершину стека

Без скобок (2 * i * i):

  • push const stack
  • вставьте локально в стек
  • умножить вершину стека
  • вставьте локально в стек
  • умножить вершину стека

Загрузка всего в стек и последующая работа обратно быстрее, чем переключение между помещением в стек и работой с ним.

Ответ 4

Касперд спросил в комментарии к принятому ответу:

Примеры Java и C используют совершенно разные имена регистров. Оба примера используют AMD64 ISA?

xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2

У меня недостаточно репутации, чтобы ответить на это в комментариях, но это те же самые ISA. Стоит отметить, что версия GCC использует 32-битную целочисленную логику, а скомпилированная версия JVM использует внутреннюю логику 64-битного целого.

R8-R15 являются только новыми x86_64 регистров. EAX to EDX - это нижние части регистров общего назначения RAX для RDX. Важная часть ответа заключается в том, что версия GCC не разворачивается. Он просто выполняет один цикл цикла для каждого цикла машинного кода. Хотя версия JVM имеет 16 циклов цикла в одном физическом цикле (на основе ответа rustyx я не переосмыслил сборку). Это одна из причин, по которой используется больше регистров, поскольку тело цикла на самом деле в 16 раз больше.

Ответ 5

Хотя это не было напрямую связано со средой вопросов, просто для любопытства я провел такой же тест на .NET Core 2.1, x64, режим выпуска.

Вот интересный результат, подтверждающий аналогичные фономены (наоборот), происходящие над темной стороной силы. Код:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

Результат:

2 * (я * я)

  • результат: 119860736, 438 мс
  • результат: 119860736, 433 мс
  • результат: 119860736, 437 мс
  • результат: 119860736, 435 мс
  • результат: 119860736, 436 мс
  • результат: 119860736, 435 мс
  • результат: 119860736, 435 мс
  • результат: 119860736, 439 мс
  • результат: 119860736, 436 мс
  • результат: 119860736, 437 мс

2 * я * я

  • результат: 119860736, 417 мс
  • результат: 119860736, 417 мс
  • результат: 119860736, 417 мс
  • результат: 119860736, 418 мс
  • результат: 119860736, 418 мс
  • результат: 119860736, 417 мс
  • результат: 119860736, 418 мс
  • результат: 119860736, 416 мс
  • результат: 119860736, 417 мс
  • результат: 119860736, 418 мс

Ответ 6

Я получил аналогичные результаты:

2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736

Я получил ИГРЫ, если обе циклы были в одной программе, или каждый из них был в отдельном файле.java/.class, выполненном в отдельном прогоне.

Наконец, вот javap -c -v <.java>:

     3: ldc           #3                  // String 2 * (i * i):
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: iload         4
    30: imul
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

против

     3: ldc           #3                  // String 2 * i * i:
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: imul
    29: iload         4
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

FYI -

java -version
java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

Ответ 7

Я попробовал JMH, используя архетип по умолчанию: я также добавил оптимизированную версию на основе объяснения Runemoro.

@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
  @Param({ "100", "1000", "1000000000" })
  private int size;

  @Benchmark
  public int two_square_i() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * (i * i);
    }
    return n;
  }

  @Benchmark
  public int square_i_two() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += i * i;
    }
    return 2*n;
  }

  @Benchmark
  public int two_i_() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * i * i;
    }
    return n;
  }
}

Результат здесь:

Benchmark                           (size)  Mode  Samples          Score   Score error  Units
o.s.MyBenchmark.square_i_two           100  avgt       10         58,062         1,410  ns/op
o.s.MyBenchmark.square_i_two          1000  avgt       10        547,393        12,851  ns/op
o.s.MyBenchmark.square_i_two    1000000000  avgt       10  540343681,267  16795210,324  ns/op
o.s.MyBenchmark.two_i_                 100  avgt       10         87,491         2,004  ns/op
o.s.MyBenchmark.two_i_                1000  avgt       10       1015,388        30,313  ns/op
o.s.MyBenchmark.two_i_          1000000000  avgt       10  967100076,600  24929570,556  ns/op
o.s.MyBenchmark.two_square_i           100  avgt       10         70,715         2,107  ns/op
o.s.MyBenchmark.two_square_i          1000  avgt       10        686,977        24,613  ns/op
o.s.MyBenchmark.two_square_i    1000000000  avgt       10  652736811,450  27015580,488  ns/op

На моем ПК (Core i7 860 - он ничего не делает, кроме чтения на моем смартфоне):

  • n += i*i затем n*2 сначала
  • 2 * (i * i) второй.

JVM явно не оптимизирует так же, как человек (основываясь на ответе Рунеморо).

Теперь, читая байт-код: javap -c -v ./target/classes/org/sample/MyBenchmark.class

Я не эксперт по байт-коду, но мы iload_2 до того, как мы imul: это, вероятно, где вы получите разницу: я могу предположить, что JVM оптимизирует чтение i дважды (i уже здесь, и нет нужно загрузить его снова) пока в 2*i*i это не может.

Ответ 8

Интересное наблюдение с использованием Java 11 и выключения размотки цикла с помощью следующей опции VM:

-XX:LoopUnrollLimit=0

Цикл с выражением 2 * (i * i) приводит к более компактному собственному коду 1:

L0001: add    eax,r11d
       inc    r8d
       mov    r11d,r8d
       imul   r11d,r8d
       shl    r11d,1h
       cmp    r8d,r10d
       jl     L0001

по сравнению с версией 2 * i * i:

L0001: add    eax,r11d
       mov    r11d,r8d
       shl    r11d,1h
       add    r11d,2h
       inc    r8d
       imul   r11d,r8d
       cmp    r8d,r10d
       jl     L0001

Java-версия:

java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)

Результаты тестов:

Benchmark          (size)  Mode  Cnt    Score     Error  Units
LoopTest.fast  1000000000  avgt    5  694,868 ±  36,470  ms/op
LoopTest.slow  1000000000  avgt    5  769,840 ± 135,006  ms/op

Исходный код теста:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {

    @Param("1000000000") private int size;

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
            .include(LoopTest.class.getSimpleName())
            .jvmArgs("-XX:LoopUnrollLimit=0")
            .build();
        new Runner(opt).run();
    }

    @Benchmark
    public int slow() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * i * i;
        return n;
    }

    @Benchmark
    public int fast() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * (i * i);
        return n;
    }
}

1 - VM options used: [TG48]

Ответ 9

Больше из приложения. Я повторил эксперимент, используя последнюю версию Java 8 JVM от IBM:

java version "1.8.0_191"
Java(TM) 2 Runtime Environment, Standard Edition (IBM build 1.8.0_191-b12 26_Oct_2018_18_45 Mac OS X x64(SR5 FP25))
Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)

И это показывает очень похожие результаты:

0.374653912 s
n = 119860736
0.447778698 s
n = 119860736

(второй результат с использованием 2 * i * i).

Интересно, что при работе на той же машине, но с использованием Oracle Java:

Java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

результаты в среднем немного медленнее:

0.414331815 s
n = 119860736
0.491430656 s
n = 119860736

Короче говоря: здесь важен даже младший номер версии HotSpot, поскольку незначительные различия в реализации JIT могут иметь заметные последствия.

Ответ 10

Два метода добавления генерируют немного другой байт-код:

  17: iconst_2
  18: iload         4
  20: iload         4
  22: imul
  23: imul
  24: iadd

Для 2 * (i * i) против:

  17: iconst_2
  18: iload         4
  20: imul
  21: iload         4
  23: imul
  24: iadd

Для 2 * я * i.

И при использовании теста JMH, как это:

@Warmup(iterations = 5, batchSize = 1)
@Measurement(iterations = 5, batchSize = 1)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MyBenchmark {

    @Benchmark
    public int noBrackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int brackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * (i * i);
        }
        return n;
    }

}

Разница очевидна:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: <none>

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  380.889 ± 58.011  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  512.464 ± 11.098  ms/op

То, что вы наблюдаете, является правильным, а не просто аномалией вашего стиля бенчмаркинга (т.е. Без разминки, см. Как написать правильный микро-бенчмарк в Java?)

Бегом снова с Граалем:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  335.100 ± 23.085  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  331.163 ± 50.670  ms/op

Вы видите, что результаты гораздо ближе, что имеет смысл, поскольку Graal - это более производительный, более современный компилятор.

Так что на самом деле это зависит только от того, насколько хорошо JIT-компилятор способен оптимизировать конкретный фрагмент кода и не обязательно имеет для этого логическую причину.

Ответ 11

Помните, что JIT имеет тенденцию очень интенсивно разворачивать маленькие циклы.

Это быстрее, потому что JIT генерирует более оптимальный ассемблерный код для первого случая.

Ответ 12

Если взять только два члена суммирования, то можно видеть, что -

в прежнем случае справедлив простой математический факт:

enter image description here

(3 multiplications)

но из-за правил приоритета оператора мы получаем в последнем случае:

enter image description here

(4 multiplications)