Пример
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
print s
1 5
2 4
3 3
4 2
5 1
Есть ли эффективный способ создания серии. например содержащий в каждой строке значения с задержкой (в этом примере до лага 2)
3 [3, 4, 5]
4 [2, 3, 4]
5 [1, 2, 3]
Это соответствует s = pd.Series([[3,4,5], [2,3,4], [1,2,3]], index = [3,4,5])
Как это можно сделать эффективным образом для данных с большим количеством временных рядов, которые очень длинные?
Спасибо
Отредактировано после просмотра ответов
ok, в конце я реализовал эту функцию:
def buildLaggedFeatures(s,lag=2,dropna=True):
'''
Builds a new DataFrame to facilitate regressing over all possible lagged features
'''
if type(s) is pd.DataFrame:
new_dict={}
for col_name in s:
new_dict[col_name]=s[col_name]
# create lagged Series
for l in range(1,lag+1):
new_dict['%s_lag%d' %(col_name,l)]=s[col_name].shift(l)
res=pd.DataFrame(new_dict,index=s.index)
elif type(s) is pd.Series:
the_range=range(lag+1)
res=pd.concat([s.shift(i) for i in the_range],axis=1)
res.columns=['lag_%d' %i for i in the_range]
else:
print 'Only works for DataFrame or Series'
return None
if dropna:
return res.dropna()
else:
return res
он производит желаемые выходы и управляет присвоением имен столбцам в результирующем DataFrame.
Для серии в качестве входного сигнала:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res=buildLaggedFeatures(s,lag=2,dropna=False)
lag_0 lag_1 lag_2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
и для ввода DataFrame:
s2=s=pd.DataFrame({'a':[5,4,3,2,1], 'b':[50,40,30,20,10]},index=[1,2,3,4,5])
res2=buildLaggedFeatures(s2,lag=2,dropna=True)
a a_lag1 a_lag2 b b_lag1 b_lag2
3 3 4 5 30 40 50
4 2 3 4 20 30 40
5 1 2 3 10 20 30