Проверьте список ссылок в столбце панд, используя векторизацию numpy

У меня есть список ссылок

ref = ['September', 'August', 'July', 'June', 'May', 'April', 'March']

И датафрейм

df = pd.DataFrame({'Month_List': [['July'], ['August'], ['July', 'June'], ['May', 'April', 'March']]})
df
    Month_List
0   [July]
1   [August]
2   [July, June]
3   [May, April, March]

Я хочу проверить, какие элементы из списка ссылок присутствуют в каждой строке, и преобразовать в двоичный список

Я могу добиться этого, используя apply

def convert_month_to_binary(ref,lst):
    s = pd.Series(ref)
    return s.isin(lst).astype(int).tolist()  

df['Binary_Month_List'] = df['Month_List'].apply(lambda x: convert_month_to_binary(ref, x))
df

    Month_List          Binary_Month_List
0   [July]              [0, 0, 1, 0, 0, 0, 0]
1   [August]            [0, 1, 0, 0, 0, 0, 0]
2   [July, June]        [0, 0, 1, 1, 0, 0, 0]
3   [May, April, March] [0, 0, 0, 0, 1, 1, 1]

Тем не менее, использование apply для больших наборов данных очень медленное, и поэтому я собираюсь использовать векторизацию numpy. Как я могу улучшить свои показатели?

Расширение:

Я хотел использовать numpy vectorization, потому что теперь мне нужно применить другую функцию в этом списке

Я пытаюсь так, но производительность очень низкая. Аналогичные результаты с apply

def count_one(lst):
    index = [i for i, e in enumerate(lst) if e != 0] 
    return len(index)

vfunc = np.vectorize(count_one)
df['Value'] = vfunc(df['Binary_Month_List']) 

Ответ 1

В пандах лучше не использовать list таким способом, но это возможно с MultiLabelBinarizer и DataFrame.reindex для добавленных отсутствующих категорий, последних значений преобразования к массиву, а затем к list, если важна производительность:

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()
df1 = pd.DataFrame(mlb.fit_transform(df['Month_List']),columns=mlb.classes_)
df['Binary_Month_List'] = df1.reindex(columns=ref, fill_value=0).values.tolist()

Или Series.str.join, Series.str.get_dummies и reindex:

df['Binary_Month_List'] = (df['Month_List'].str.join('|')
                                           .str.get_dummies()
                                           .reindex(columns=ref, fill_value=0)
                                           .values
                                           .tolist())
print (df)
            Month_List      Binary_Month_List
0               [July]  [0, 0, 1, 0, 0, 0, 0]
1             [August]  [0, 1, 0, 0, 0, 0, 0]
2         [July, June]  [0, 0, 1, 1, 0, 0, 0]
3  [May, April, March]  [0, 0, 0, 0, 1, 1, 1]

Производительность другая:

df = pd.concat([df] * 1000, ignore_index=True)

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()

In [338]: %timeit (df['Month_List'].str.join('|').str.get_dummies().reindex(columns=ref, fill_value=0).values.tolist())
31.4 ms ± 1.41 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [339]: %timeit pd.DataFrame(mlb.fit_transform(df['Month_List']),columns=mlb.classes_).reindex(columns=ref, fill_value=0).values.tolist()
5.57 ms ± 94.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [340]: %timeit df['Binary_Month_List2'] =df.Month_List.explode().str.get_dummies().sum(level=0).reindex(columns=ref, fill_value=0).values.tolist()
58.6 ms ± 461 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Ответ 2

Мы можем использовать explode с get_dummies, уведомление explode доступно после 0,25

df.Month_List.explode().str.get_dummies().sum(level=0).reindex(columns=ref, fill_value=0).values.tolist()
Out[79]: 
[[0, 0, 1, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1]]

#df['new']=df.Month_List.explode().str.get_dummies().sum(level=0).reindex(columns=ref, fill_value=0).values.tolist()

Ответ 3

Здесь один с инструментами NumPy -

def isin_lists(df_col, ref):
    a = np.concatenate(df_col)
    b = np.asarray(ref)

    sidx = b.argsort()
    c = sidx[np.searchsorted(b,a,sorter=sidx)]

    l = np.array([len(i) for i in df_col])
    r = np.repeat(np.arange(len(l)),l)

    out = np.zeros((len(l),len(b)), dtype=bool)
    out[r,c] = 1
    return out.view('i1')

Вывод для данного образца -

In [79]: bin_ar = isin_lists(df['Month_List'], ref)

In [80]: bin_ar
Out[80]: 
array([[0, 0, 1, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 0, 0, 0],
       [0, 0, 0, 0, 1, 1, 1]], dtype=int8)

# To assign as lists for each row into 'df'
In [81]: df['Binary_Month_List'] = bin_ar.tolist()

# To get counts
In [82]: df['Value'] = bin_ar.sum(1)

In [83]: df
Out[83]: 
            Month_List      Binary_Month_List  Value
0               [July]  [0, 0, 1, 0, 0, 0, 0]      1
1             [August]  [0, 1, 0, 0, 0, 0, 0]      1
2         [July, June]  [0, 0, 1, 1, 0, 0, 0]      2
3  [May, April, March]  [0, 0, 0, 0, 1, 1, 1]      3

Если по какой-то причине вы не можете использовать промежуточный bin_ar и имеете только заголовок 'Binary_Month_List' для работы с -

In [15]: df['Value'] = np.vstack(df['Binary_Month_List']).sum(axis=1)

Ответ 4

Я не уверен, что это будет быстрее. Но в этом случае также можно использовать count-vector.

from sklearn.feature_extraction.text import CountVectorizer
vect=CountVectorizer(binary=True)

mys=([(','.join(i)) for i in df['Month_List']])
X=vect.fit_transform(mys)
col_names=vect.get_feature_names()
ndf=pd.SparseDataFrame(X, columns=col_names)
df=df.join(ndf).astype(str)
df['Binary_Month_List'] = df.iloc[:, 1:].values.tolist()