Кластерный анализ в R: определение оптимального количества кластеров

Будучи новичком в R, я не очень уверен, как выбрать лучшее количество кластеров для анализа k-средств. После построения подмножества данных ниже, сколько кластеров будет подходящим? Как выполнить анализ кластерного дендро?

n = 1000
kk = 10    
x1 = runif(kk)
y1 = runif(kk)
z1 = runif(kk)    
x4 = sample(x1,length(x1))
y4 = sample(y1,length(y1)) 
randObs <- function()
{
  ix = sample( 1:length(x4), 1 )
  iy = sample( 1:length(y4), 1 )
  rx = rnorm( 1, x4[ix], runif(1)/8 )
  ry = rnorm( 1, y4[ix], runif(1)/8 )
  return( c(rx,ry) )
}  
x = c()
y = c()
for ( k in 1:n )
{
  rPair  =  randObs()
  x  =  c( x, rPair[1] )
  y  =  c( y, rPair[2] )
}
z <- rnorm(n)
d <- data.frame( x, y, z )

Ответ 1

Если ваш вопрос how can I determine how many clusters are appropriate for a kmeans analysis of my data?, то вот несколько вариантов. В статье wikipedia об определении количества кластеров есть хороший обзор некоторых из этих методов.

Во-первых, некоторые воспроизводимые данные (данные в Q... неясны для меня):

n = 100
g = 6 
set.seed(g)
d <- data.frame(x = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))), 
                y = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))))
plot(d)

enter image description here

One. Посмотрите на изгиб или локоть в сумме кривой scree error (SSE). Подробнее см. http://www.statmethods.net/advstats/cluster.html и http://www.mattpeeples.net/kmeans.html. Расположение локтя в полученном графике предполагает подходящее количество кластеров для километров:

mydata <- d
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
  for (i in 2:15) wss[i] <- sum(kmeans(mydata,
                                       centers=i)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters",
     ylab="Within groups sum of squares")

Мы можем заключить, что этим кластером будет указан 4 кластера: enter image description here

Два. Вы можете сделать разбиение по медоидам, чтобы оценить количество кластеров, используя функцию pamk в пакете fpc.

library(fpc)
pamk.best <- pamk(d)
cat("number of clusters estimated by optimum average silhouette width:", pamk.best$nc, "\n")
plot(pam(d, pamk.best$nc))

enter image description hereenter image description here

# we could also do:
library(fpc)
asw <- numeric(20)
for (k in 2:20)
  asw[[k]] <- pam(d, k) $ silinfo $ avg.width
k.best <- which.max(asw)
cat("silhouette-optimal number of clusters:", k.best, "\n")
# still 4

Три. Критерий Калинского: Другой подход к диагностике того, сколько кластеров соответствует данным. В этом случае мы пробуем от 1 до 10 групп.

require(vegan)
fit <- cascadeKM(scale(d, center = TRUE,  scale = TRUE), 1, 10, iter = 1000)
plot(fit, sortg = TRUE, grpmts.plot = TRUE)
calinski.best <- as.numeric(which.max(fit$results[2,]))
cat("Calinski criterion optimal number of clusters:", calinski.best, "\n")
# 5 clusters!

enter image description here

Четыре. Определить оптимальную модель и количество кластеров в соответствии с байесовским информационным критерием для максимизации ожиданий, инициализированную иерархической кластеризацией для параметризованных моделей смеси Гаусса

# See http://www.jstatsoft.org/v18/i06/paper
# http://www.stat.washington.edu/research/reports/2006/tr504.pdf
#
library(mclust)
# Run the function to see how many clusters
# it finds to be optimal, set it to search for
# at least 1 model and up 20.
d_clust <- Mclust(as.matrix(d), G=1:20)
m.best <- dim(d_clust$z)[2]
cat("model-based optimal number of clusters:", m.best, "\n")
# 4 clusters
plot(d_clust)

enter image description hereenter image description hereenter image description here

Пять. Кластеризация распространения аффинности (AP), см. http://dx.doi.org/10.1126/science.1136800

library(apcluster)
d.apclus <- apcluster(negDistMat(r=2), d)
cat("affinity propogation optimal number of clusters:", length([email protected]), "\n")
# 4
heatmap(d.apclus)
plot(d.apclus, d)

enter image description hereenter image description here

Шесть. Статистические данные о пробелах для оценки количества кластеров. См. Также код для приятного графического вывода. Попробуйте 2-10 кластеров здесь:

library(cluster)
clusGap(d, kmeans, 10, B = 100, verbose = interactive())

Clustering k = 1,2,..., K.max (= 10): .. done
Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
.................................................. 50 
.................................................. 100 
Clustering Gap statistic ["clusGap"].
B=100 simulated reference sets, k = 1..10
 --> Number of clusters (method 'firstSEmax', SE.factor=1): 4
          logW   E.logW        gap     SE.sim
 [1,] 5.991701 5.970454 -0.0212471 0.04388506
 [2,] 5.152666 5.367256  0.2145907 0.04057451
 [3,] 4.557779 5.069601  0.5118225 0.03215540
 [4,] 3.928959 4.880453  0.9514943 0.04630399
 [5,] 3.789319 4.766903  0.9775842 0.04826191
 [6,] 3.747539 4.670100  0.9225607 0.03898850
 [7,] 3.582373 4.590136  1.0077628 0.04892236
 [8,] 3.528791 4.509247  0.9804556 0.04701930
 [9,] 3.442481 4.433200  0.9907197 0.04935647
[10,] 3.445291 4.369232  0.9239414 0.05055486

Здесь результат работы Эдвина Чэня статистики пробелов: enter image description here

Семь. Вам также может быть полезно изучить ваши данные с помощью clustergrams, чтобы визуализировать назначение кластера, см. http://www.r-statistics.com/2010/06/clustergram-visualization-and-diagnostics-for-cluster-analysis-r-code/ для получения более подробной информации.

Восемь. пакет NbClust содержит 30 индексов для определения количества кластеров в наборе данных.

library(NbClust)
nb <- NbClust(d, diss="NULL", distance = "euclidean", 
        min.nc=2, max.nc=15, method = "kmeans", 
        index = "alllong", alphaBeale = 0.1)
hist(nb$Best.nc[1,], breaks = max(na.omit(nb$Best.nc[1,])))
# Looks like 3 is the most frequently determined number of clusters
# and curiously, four clusters is not in the output at all!

<Т411 >

Если ваш вопрос how can I produce a dendrogram to visualize the results of my cluster analysis, вы должны начать с них: http://www.statmethods.net/advstats/cluster.html http://www.r-tutor.com/gpu-computing/clustering/hierarchical-cluster-analysis http://gastonsanchez.wordpress.com/2012/10/03/7-ways-to-plot-dendrograms-in-r/ И посмотрите здесь более экзотические методы: http://cran.r-project.org/web/views/Cluster.html

Вот несколько примеров:

d_dist <- dist(as.matrix(d))   # find distance matrix 
plot(hclust(d_dist))           # apply hirarchical clustering and plot

enter image description here

# a Bayesian clustering method, good for high-dimension data, more details:
# http://vahid.probstat.ca/paper/2012-bclust.pdf
install.packages("bclust")
library(bclust)
x <- as.matrix(d)
d.bclus <- bclust(x, transformed.par = c(0, -50, log(16), 0, 0, 0))
viplot(imp(d.bclus)$var); plot(d.bclus); ditplot(d.bclus)
dptplot(d.bclus, scale = 20, horizbar.plot = TRUE,varimp = imp(d.bclus)$var, horizbar.distance = 0, dendrogram.lwd = 2)
# I just include the dendrogram here

enter image description here

Кроме того, для высокоразмерных данных используется библиотека pvclust, которая вычисляет значения p для иерархической кластеризации с помощью повторной выборки с многомасштабной перезагрузкой. Вот пример из документации (не работает над такими низкоразмерными данными, как в моем примере):

library(pvclust)
library(MASS)
data(Boston)
boston.pv <- pvclust(Boston)
plot(boston.pv)

enter image description here

Помогает ли это?

Ответ 2

Трудно добавить что-то слишком сложный ответ. Хотя я чувствую, что мы должны упомянуть identify здесь, особенно потому, что @Ben показывает много примеров дендрограмм.

d_dist <- dist(as.matrix(d))   # find distance matrix 
plot(hclust(d_dist)) 
clusters <- identify(hclust(d_dist))

identify позволяет вам интерактивно выбирать кластеры из дендрограммы и сохраняет ваши варианты в списке. Нажмите Esc, чтобы выйти из интерактивного режима и вернуться в консоль R. Обратите внимание, что список содержит индексы, а не имена ростов (в отличие от cutree).

Ответ 3

Чтобы определить оптимальный k-кластер в методах кластеризации. Обычно я использую метод Elbow, который сопровождает параллельную обработку, чтобы избежать компрометации времени. Этот код может выглядеть следующим образом:

Метод локтя

elbow.k <- function(mydata){
dist.obj <- dist(mydata)
hclust.obj <- hclust(dist.obj)
css.obj <- css.hclust(dist.obj,hclust.obj)
elbow.obj <- elbow.batch(css.obj)
k <- elbow.obj$k
return(k)
}

Параллельный локоть

no_cores <- detectCores()
    cl<-makeCluster(no_cores)
    clusterEvalQ(cl, library(GMD))
    clusterExport(cl, list("data.clustering", "data.convert", "elbow.k", "clustering.kmeans"))
 start.time <- Sys.time()
 elbow.k.handle(data.clustering))
 k.clusters <- parSapply(cl, 1, function(x) elbow.k(data.clustering))
    end.time <- Sys.time()
    cat('Time to find k using Elbow method is',(end.time - start.time),'seconds with k value:', k.clusters)

Хорошо работает.

Ответ 4

Великолепный ответ от Бена. Однако я удивлен тем, что метод распространения аффинности (AP) был предложен только для того, чтобы найти число кластеров для метода k -средства, где в общем случае AP делает лучшую кластеризацию данных. См. Научную статью, поддерживающую этот метод в Science:

Фрей, Брендан Дж. и Делберт Дуек. "Кластеризация путем передачи сообщений между точками данных". наука 315.5814 (2007): 972-976.

Итак, если вы не привязаны к k-значению, я предлагаю напрямую использовать AP, который будет группировать данные, не требуя знать количество кластеров:

library(apcluster)
apclus = apcluster(negDistMat(r=2), data)
show(apclus)

Если отрицательные эвклидовы расстояния не подходят, вы можете использовать другие меры сходства, предусмотренные в том же пакете. Например, для сходства, основанного на корреляциях Спирмена, это то, что вам нужно:

sim = corSimMat(data, method="spearman")
apclus = apcluster(s=sim)

Обратите внимание, что эти функции для сходства в пакете AP просто предоставляются для простоты. Фактически, функция apcluster() в R примет любую матрицу корреляций. То же самое с corSimMat() можно сделать с помощью этого:

sim = cor(data, method="spearman")

или

sim = cor(t(data), method="spearman")

в зависимости от того, что вы хотите сгруппировать на своей матрице (строки или столбцы).

Ответ 5

Эти методы хороши, но при попытке найти k для гораздо больших наборов данных, они могут быть очень медленными в R.

Хорошее решение, которое я нашел, - это пакет "RWeka", который имеет эффективную реализацию алгоритма X-Means - расширенную версию K-Means, которая лучше масштабируется и определит оптимальное количество кластеров для вас.

Сначала вы должны убедиться, что Weka установлена в вашей системе и что XMeans установлен через инструмент менеджера пакетов Weka.

library(RWeka)

# Print a list of available options for the X-Means algorithm
WOW("XMeans")

# Create a Weka_control object which will specify our parameters
weka_ctrl <- Weka_control(
    I = 1000,                          # max no. of overall iterations
    M = 1000,                          # max no. of iterations in the kMeans loop
    L = 20,                            # min no. of clusters
    H = 150,                           # max no. of clusters
    D = "weka.core.EuclideanDistance", # distance metric Euclidean
    C = 0.4,                           # cutoff factor ???
    S = 12                             # random number seed (for reproducibility)
)

# Run the algorithm on your data, d
x_means <- XMeans(d, control = weka_ctrl)

# Assign cluster IDs to original data set
d$xmeans.cluster <- x_means$class_ids

Ответ 6

Простым решением является библиотека factoextra. Вы можете изменить метод кластеризации и метод расчета лучшего количества групп. Например, если вы хотите узнать лучшее число кластеров для k-, значит:

Данные: mtcars

library(factoextra)   
fviz_nbclust(mtcars, kmeans, method = "wss") +
      geom_vline(xintercept = 3, linetype = 2)+
      labs(subtitle = "Elbow method")

Наконец, мы получаем график вроде:

enter image description here

Ответ 7

Ответы замечательные. Если вы хотите дать возможность другому методу кластеризации, вы можете использовать иерархическую кластеризацию и посмотреть, как расщепляются данные.

> set.seed(2)
> x=matrix(rnorm(50*2), ncol=2)
> hc.complete = hclust(dist(x), method="complete")
> plot(hc.complete)

введите описание изображения здесь

В зависимости от того, сколько классов вам нужно, вы можете вырезать свою дендрограмму как:

> cutree(hc.complete,k = 2)
 [1] 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1
[26] 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 2

Если вы наберете ?cutree, вы увидите определения. Если ваш набор данных имеет три класса, это будет просто cutree(hc.complete, k = 3). Эквивалент для cutree(hc.complete,k = 2) равен cutree(hc.complete,h = 4.9).