Перечисление всех перестановок строки/целого

Общая задача в опросах по программированию (не из моего опыта интервью) - взять строку или целое число и перечислить все возможные перестановки.

Есть ли пример того, как это делается, и логику решения этой проблемы?

Я видел несколько фрагментов кода, но они не были хорошо прокомментированы/объяснены и поэтому трудно следовать.

Ответ 1

Прежде всего: он, конечно, пахнет рекурсией!

Поскольку вы также хотели знать принцип, я сделал все возможное, чтобы объяснить его человеческий язык. Я думаю, что рекурсия очень проста в большинстве случаев. Вам нужно всего лишь выполнить два шага:

  • Первый шаг
  • Все остальные шаги (все с одинаковой логикой)

В человеческом языке:

Короче:
 1. Перестановка 1 элемента - это один элемент.
 2. Перестановка набора элементов - это список каждого из элементов, объединенный с каждой перестановкой других элементов.

Пример:

Если набор имеет только один элемент →
верните его.
perm (a) → a

Если набор имеет два символа: для каждый элемент в нем: вернуть элемент с перестановкой Остальные элементы добавлены так:

perm (ab) →

a + perm (b) → ab

b + perm (a) → ba

Далее: для каждого символа в наборе: вернуть символ, связанный с переходом > остальной части набора

perm (abc) →

a + perm (bc) → abc, acb

b + perm (ac) → bac, bca

c + perm (ab) → cab, cba

perm (abc... z) →

a + perm (...), b + perm (....)
....

Я нашел псевдокод на http://www.programmersheaven.com/mb/Algorithms/369713/369713/permutation-algorithm-help/:

makePermutations(permutation) {
  if (length permutation < required length) {
    for (i = min digit to max digit) {
      if (i not in permutation) {
        makePermutations(permutation+i)
      }
    }
  }
  else {
    add permutation to list
  }
}

С#

ОК, и что-то более сложное (и поскольку оно помечено С#), из http://radio.weblogs.com/0111551/stories/2002/10/14/permutations.html: Довольно длинный, но я все равно решил его скопировать, поэтому сообщение не зависит от оригинала.

Функция принимает строку символов и записывает все возможные перестановки этой точной строки, поэтому, например, если "ABC" была предоставлена, она должна разливаться:

ABC, ACB, BAC, BCA, CAB, CBA.

код:

class Program
{
    private static void Swap(ref char a, ref char b)
    {
        if (a == b) return;

        a ^= b;
        b ^= a;
        a ^= b;
    }

    public static void GetPer(char[] list)
    {
        int x = list.Length - 1;
        GetPer(list, 0, x);
    }

    private static void GetPer(char[] list, int k, int m)
    {
        if (k == m)
        {
            Console.Write(list);
        }
        else
            for (int i = k; i <= m; i++)
            {
                   Swap(ref list[k], ref list[i]);
                   GetPer(list, k + 1, m);
                   Swap(ref list[k], ref list[i]);
            }
    }

    static void Main()
    {
        string str = "sagiv";
        char[] arr = str.ToCharArray();
        GetPer(arr);
    }
}

Ответ 2

Это только две строки кода, если LINQ разрешено использовать. См. Мой ответ здесь.

ИЗМЕНИТЬ

Вот моя общая функция, которая может возвращать все перестановки (не комбинации) из списка T:

static IEnumerable<IEnumerable<T>>
    GetPermutations<T>(IEnumerable<T> list, int length)
{
    if (length == 1) return list.Select(t => new T[] { t });

    return GetPermutations(list, length - 1)
        .SelectMany(t => list.Where(e => !t.Contains(e)),
            (t1, t2) => t1.Concat(new T[] { t2 }));
}

Пример:

IEnumerable<IEnumerable<int>> result =
    GetPermutations(Enumerable.Range(1, 3), 3);

Вывод - список целых списков:

{1,2,3} {1,3,2} {2,1,3} {2,3,1} {3,1,2} {3,2,1}

Поскольку эта функция использует LINQ, для этого требуется .net 3.5 или выше.

Ответ 3

Здесь я нашел решение. Он был написан на Java, но я преобразовал его в С#. Надеюсь, это поможет вам.

Enter image description here

Здесь код в С#:

static void Main(string[] args)
{
    string str = "ABC";
    char[] charArry = str.ToCharArray();
    permute(charArry, 0, 2);
    Console.ReadKey();
}

static void permute(char[] arry, int i, int n)
{
    int j;
    if (i==n)
        Console.WriteLine(arry);
    else
    {
        for(j = i; j <=n; j++)
        {
            swap(ref arry[i],ref arry[j]);
            permute(arry,i+1,n);
            swap(ref arry[i], ref arry[j]); //backtrack
        }
    }
}

static void swap(ref char a, ref char b)
{
    char tmp;
    tmp = a;
    a=b;
    b = tmp;
}

Ответ 4

Рекурсия не требуется, здесь является хорошей информацией об этом решении.

var values1 = new[] { 1, 2, 3, 4, 5 };

foreach (var permutation in values1.GetPermutations())
{
    Console.WriteLine(string.Join(", ", permutation));
}

var values2 = new[] { 'a', 'b', 'c', 'd', 'e' };

foreach (var permutation in values2.GetPermutations())
{
    Console.WriteLine(string.Join(", ", permutation));
}

Console.ReadLine();

Я использовал этот алгоритм в течение многих лет, он имеет O (N) сложность времени и пространства для расчета каждой перестановки .

public static class SomeExtensions
{
    public static IEnumerable<IEnumerable<T>> GetPermutations<T>(this IEnumerable<T> enumerable)
    {
        var array = enumerable as T[] ?? enumerable.ToArray();

        var factorials = Enumerable.Range(0, array.Length + 1)
            .Select(Factorial)
            .ToArray();

        for (var i = 0L; i < factorials[array.Length]; i++)
        {
            var sequence = GenerateSequence(i, array.Length - 1, factorials);

            yield return GeneratePermutation(array, sequence);
        }
    }

    private static IEnumerable<T> GeneratePermutation<T>(T[] array, IReadOnlyList<int> sequence)
    {
        var clone = (T[]) array.Clone();

        for (int i = 0; i < clone.Length - 1; i++)
        {
            Swap(ref clone[i], ref clone[i + sequence[i]]);
        }

        return clone;
    }

    private static int[] GenerateSequence(long number, int size, IReadOnlyList<long> factorials)
    {
        var sequence = new int[size];

        for (var j = 0; j < sequence.Length; j++)
        {
            var facto = factorials[sequence.Length - j];

            sequence[j] = (int)(number / facto);
            number = (int)(number % facto);
        }

        return sequence;
    }

    static void Swap<T>(ref T a, ref T b)
    {
        T temp = a;
        a = b;
        b = temp;
    }

    private static long Factorial(int n)
    {
        long result = n;

        for (int i = 1; i < n; i++)
        {
            result = result * i;
        }

        return result;
    }
}

Ответ 5

void permute (char *str, int ptr) {
  int i, len;
  len = strlen(str);
  if (ptr == len) {
    printf ("%s\n", str);
    return;
  }

  for (i = ptr ; i < len ; i++) {
    swap (&str[ptr], &str[i]);
    permute (str, ptr + 1);
    swap (&str[ptr], &str[i]);
  }
}

Вы можете написать свою функцию свопинга для замены символов.
Это должно вызываться как permute (string, 0);

Ответ 6

Прежде всего, у наборов есть перестановки, а не строки или целые числа, поэтому я просто предполагаю, что вы имеете в виду "набор символов в строке".

Заметим, что набор размеров n имеет n! п-перестановки.

Следующий псевдокод (из Википедии), называемый с k = 1... n! даст все перестановки:

function permutation(k, s) {
    for j = 2 to length(s) {
        swap s[(k mod j) + 1] with s[j]; // note that our array is indexed starting at 1
        k := k / j; // integer division cuts off the remainder
    }
    return s;
}

Здесь эквивалентный код Python (для индексов массива 0):

def permutation(k, s):
    r = s[:]
    for j in range(2, len(s)+1):
        r[j-1], r[k%j] = r[k%j], r[j-1]
        k = k/j+1
    return r

Ответ 7

Немного измененная версия на С#, которая дает необходимые перестановки в массиве любого типа.

    // USAGE: create an array of any type, and call Permutations()
    var vals = new[] {"a", "bb", "ccc"};
    foreach (var v in Permutations(vals))
        Console.WriteLine(string.Join(",", v)); // Print values separated by comma


public static IEnumerable<T[]> Permutations<T>(T[] values, int fromInd = 0)
{
    if (fromInd + 1 == values.Length)
        yield return values;
    else
    {
        foreach (var v in Permutations(values, fromInd + 1))
            yield return v;

        for (var i = fromInd + 1; i < values.Length; i++)
        {
            SwapValues(values, fromInd, i);
            foreach (var v in Permutations(values, fromInd + 1))
                yield return v;
            SwapValues(values, fromInd, i);
        }
    }
}

private static void SwapValues<T>(T[] values, int pos1, int pos2)
{
    if (pos1 != pos2)
    {
        T tmp = values[pos1];
        values[pos1] = values[pos2];
        values[pos2] = tmp;
    }
}

Ответ 8

Мне понравился подход FBryant87, поскольку он прост. К сожалению, это похоже на то, что многие другие "решения" не предлагают всех перестановок или, например, целое число, если оно содержит одну и ту же цифру более одного раза. Например, возьмите 656123. Строка:

var tail = chars.Except(new List<char>(){c});

using Except приведет к удалению всех вхождений, т.е. при c = 6, две цифры будут удалены, и мы останемся, например. 5123. Поскольку ни одно из решений, которые я пробовал, не решило это, я решил попробовать и сам решить, используя код FBryant87 в качестве базы. Вот что я придумал:

private static List<string> FindPermutations(string set)
    {
        var output = new List<string>();
        if (set.Length == 1)
        {
            output.Add(set);
        }
        else
        {
            foreach (var c in set)
            {
                // Remove one occurrence of the char (not all)
                var tail = set.Remove(set.IndexOf(c), 1);
                foreach (var tailPerms in FindPermutations(tail))
                {
                    output.Add(c + tailPerms);
                }
            }
        }
        return output;
    }

Я просто удаляю первое обнаруженное появление, используя .Remove и .IndexOf. Кажется, работает как минимум для моего использования. Я уверен, что это можно сделать умнее.

Следует отметить одно: в результате список может содержать дубликаты, поэтому убедитесь, что вы либо возвращаете метод, например. вместо HashSet или удалить дубликаты после возврата, используя любой способ, который вам нравится.

Ответ 10

Здесь чисто функциональная реализация F #:


let factorial i =
    let rec fact n x =
        match n with
        | 0 -> 1
        | 1 -> x
        | _ -> fact (n-1) (x*n)
    fact i 1

let swap (arr:'a array) i j = [| for k in 0..(arr.Length-1) -> if k = i then arr.[j] elif k = j then arr.[i] else arr.[k] |]

let rec permutation (k:int,j:int) (r:'a array) =
    if j = (r.Length + 1) then r
    else permutation (k/j+1, j+1) (swap r (j-1) (k%j))

let permutations (source:'a array) = seq { for k = 0 to (source |> Array.length |> factorial) - 1 do yield permutation (k,2) source }

Производительность может быть значительно улучшена путем изменения swap, чтобы воспользоваться изменчивой природой массивов CLR, но эта реализация является потокобезопасной в отношении исходного массива и может быть желательной в некоторых контекстах. Кроме того, для массивов с более чем 16 элементами int должен быть заменен типами с большей/произвольной точностью, поскольку factorial 17 приводит к переполнению int32.

Ответ 11

Вот функция, которая будет печатать всю перестановку. Эта функция реализует логику Объяснение peter.

public class Permutation
{
    //http://www.java2s.com/Tutorial/Java/0100__Class-Definition/RecursivemethodtofindallpermutationsofaString.htm

    public static void permuteString(String beginningString, String endingString)
    {           

        if (endingString.Length <= 1)
            Console.WriteLine(beginningString + endingString);
        else
            for (int i = 0; i < endingString.Length; i++)
            {

                String newString = endingString.Substring(0, i) + endingString.Substring(i + 1);

                permuteString(beginningString + endingString.ElementAt(i), newString);

            }
    }
}

    static void Main(string[] args)
    {

        Permutation.permuteString(String.Empty, "abc");
        Console.ReadLine();

    }

Ответ 12

Ниже приведена моя реализация перестановки. Не обращайте внимания на имена переменных, поскольку я делал это для удовольствия:)

class combinations
{
    static void Main()
    {

        string choice = "y";
        do
        {
            try
            {
                Console.WriteLine("Enter word :");
                string abc = Console.ReadLine().ToString();
                Console.WriteLine("Combinatins for word :");
                List<string> final = comb(abc);
                int count = 1;
                foreach (string s in final)
                {
                    Console.WriteLine("{0} --> {1}", count++, s);
                }
                Console.WriteLine("Do you wish to continue(y/n)?");
                choice = Console.ReadLine().ToString();
            }
            catch (Exception exc)
            {
                Console.WriteLine(exc);
            }
        } while (choice == "y" || choice == "Y");
    }

    static string swap(string test)
    {
        return swap(0, 1, test);
    }

    static List<string> comb(string test)
    {
        List<string> sec = new List<string>();
        List<string> first = new List<string>();
        if (test.Length == 1) first.Add(test);
        else if (test.Length == 2) { first.Add(test); first.Add(swap(test)); }
        else if (test.Length > 2)
        {
            sec = generateWords(test);
            foreach (string s in sec)
            {
                string init = s.Substring(0, 1);
                string restOfbody = s.Substring(1, s.Length - 1);

                List<string> third = comb(restOfbody);
                foreach (string s1 in third)
                {
                    if (!first.Contains(init + s1)) first.Add(init + s1);
                }


            }
        }

        return first;
    }

    static string ShiftBack(string abc)
    {
        char[] arr = abc.ToCharArray();
        char temp = arr[0];
        string wrd = string.Empty;
        for (int i = 1; i < arr.Length; i++)
        {
            wrd += arr[i];
        }

        wrd += temp;
        return wrd;
    }

    static List<string> generateWords(string test)
    {
        List<string> final = new List<string>();
        if (test.Length == 1)
            final.Add(test);
        else
        {
            final.Add(test);
            string holdString = test;
            while (final.Count < test.Length)
            {
                holdString = ShiftBack(holdString);
                final.Add(holdString);
            }
        }

        return final;
    }

    static string swap(int currentPosition, int targetPosition, string temp)
    {
        char[] arr = temp.ToCharArray();
        char t = arr[currentPosition];
        arr[currentPosition] = arr[targetPosition];
        arr[targetPosition] = t;
        string word = string.Empty;
        for (int i = 0; i < arr.Length; i++)
        {
            word += arr[i];

        }

        return word;

    }
}

Ответ 13

Вот пример высокого уровня, который я написал, который иллюстрирует объяснение человеческого языка. Питер дал:

    public List<string> FindPermutations(string input)
    {
        if (input.Length == 1)
            return new List<string> { input };
        var perms = new List<string>();
        foreach (var c in input)
        {
            var others = input.Remove(input.IndexOf(c), 1);
            perms.AddRange(FindPermutations(others).Select(perm => c + perm));
        }
        return perms;
    }

Ответ 14

Здесь легко понять функцию перестановки для строки и целого в качестве входных данных. С помощью вы можете даже установить длину вывода (которая в нормальном случае равна входной длине)

Строка

    static ICollection<string> result;

    public static ICollection<string> GetAllPermutations(string str, int outputLength)
    {
        result = new List<string>();
        MakePermutations(str.ToCharArray(), string.Empty, outputLength);
        return result;
    }

    private static void MakePermutations(
       char[] possibleArray,//all chars extracted from input
       string permutation,
       int outputLength//the length of output)
    {
         if (permutation.Length < outputLength)
         {
             for (int i = 0; i < possibleArray.Length; i++)
             {
                 var tempList = possibleArray.ToList<char>();
                 tempList.RemoveAt(i);
                 MakePermutations(tempList.ToArray(), 
                      string.Concat(permutation, possibleArray[i]), outputLength);
             }
         }
         else if (!result.Contains(permutation))
            result.Add(permutation);
    }

а для Integer просто измените метод вызова, а MakePermutations() останется нетронутым:

    public static ICollection<int> GetAllPermutations(int input, int outputLength)
    {
        result = new List<string>();
        MakePermutations(input.ToString().ToCharArray(), string.Empty, outputLength);
        return result.Select(m => int.Parse(m)).ToList<int>();
    }

пример 1: GetAllPermutations ( "abc", 3); "abc" "acb" "bac" "bca" "cab" "cba"

пример 2: GetAllPermutations ( "abcd", 2); "ab" "ac" "ad" "ba" "bc" "bd" "ca" "cb" "cd" "da" "db" "dc"

пример 3: GetAllPermutations (486,2); 48 46 84 86 64 68

Ответ 15

Вот простое решение в С# с использованием рекурсии,

void Main()
{
    string word = "abc";
    WordPermuatation("",word);
}

void WordPermuatation(string prefix, string word)
{
    int n = word.Length;
    if (n == 0) { Console.WriteLine(prefix); }
    else
    {
        for (int i = 0; i < n; i++)
        {
            WordPermuatation(prefix + word[i],word.Substring(0, i) + word.Substring(i + 1, n - (i+1)));
        }
    }
}

Ответ 16

Здесь мое решение в JavaScript (NodeJS). Основная идея заключается в том, что мы берем один элемент за раз, "удаляем его" из строки, меняем остальные символы и вставляем элемент спереди.

function perms (string) {
  if (string.length == 0) {
    return [];
  }
  if (string.length == 1) {
    return [string];
  }
  var list = [];
  for(var i = 0; i < string.length; i++) {
    var invariant = string[i];
    var rest = string.substr(0, i) + string.substr(i + 1);
    var newPerms = perms(rest);
    for (var j = 0; j < newPerms.length; j++) {
      list.push(invariant + newPerms[j]);
    }
  }
  return list;
}

module.exports = perms;

И вот тесты:

require('should');
var permutations = require('../src/perms');

describe('permutations', function () {
  it('should permute ""', function () {
    permutations('').should.eql([]);
  })

  it('should permute "1"', function () {
    permutations('1').should.eql(['1']);
  })

  it('should permute "12"', function () {
    permutations('12').should.eql(['12', '21']);
  })

  it('should permute "123"', function () {
    var expected = ['123', '132', '321', '213', '231', '312'];
    var actual = permutations('123');
    expected.forEach(function (e) {
      actual.should.containEql(e);
    })
  })

  it('should permute "1234"', function () {
    // Wolfram Alpha FTW!
    var expected = ['1234', '1243', '1324', '1342', '1423', '1432', '2134', '2143', '2314', '2341', '2413', '2431', '3124', '3142', '3214', '3241', '3412', '3421', '4123', '4132'];
    var actual = permutations('1234');
    expected.forEach(function (e) {
      actual.should.containEql(e);
    })
  })
})

Ответ 17

Вот самое простое решение, о котором я могу думать:

let rec distribute e = function
  | [] -> [[e]]
  | x::xs' as xs -> (e::xs)::[for xs in distribute e xs' -> x::xs]

let permute xs = Seq.fold (fun ps x -> List.collect (distribute x) ps) [[]] xs

Функция distribute принимает новый элемент e и список n -element и возвращает список из n+1 списков, каждый из которых имеет e, вставленный в другое место. Например, вставив 10 в каждое из четырех возможных мест в списке [1;2;3]:

> distribute 10 [1..3];;
val it : int list list =
  [[10; 1; 2; 3]; [1; 10; 2; 3]; [1; 2; 10; 3]; [1; 2; 3; 10]]

Функция permute складывается по каждому элементу, в свою очередь распределяя по накопленным до сих пор перестановкам, достигая высшей точки во всех перестановках. Например, 6 перестановок списка [1;2;3]:

> permute [1;2;3];;
val it : int list list =
  [[3; 2; 1]; [2; 3; 1]; [2; 1; 3]; [3; 1; 2]; [1; 3; 2]; [1; 2; 3]]

Изменение fold на a scan, чтобы промежуточные накопители проливали некоторый свет на то, как сгенерированы перестановки, элемент за раз:

> Seq.scan (fun ps x -> List.collect (distribute x) ps) [[]] [1..3];;
val it : seq<int list list> =
  seq
    [[[]]; [[1]]; [[2; 1]; [1; 2]];
     [[3; 2; 1]; [2; 3; 1]; [2; 1; 3]; [3; 1; 2]; [1; 3; 2]; [1; 2; 3]]]

Ответ 18

Вот функция, которая будет рекурсивно печатать все перестановки.

public void Permutations(string input, StringBuilder sb)
    {
        if (sb.Length == input.Length)
        {
            Console.WriteLine(sb.ToString());
            return;
        }

        char[] inChar = input.ToCharArray();

        for (int i = 0; i < input.Length; i++)
        {
            if (!sb.ToString().Contains(inChar[i]))
            {
                sb.Append(inChar[i]);
                Permutations(input, sb);    
                RemoveChar(sb, inChar[i]);
            }
        }
    }

private bool RemoveChar(StringBuilder input, char toRemove)
    {
        int index = input.ToString().IndexOf(toRemove);
        if (index >= 0)
        {
            input.Remove(index, 1);
            return true;
        }
        return false;
    }

Ответ 19

Вот ответ на С#, который немного упрощен.

public static void StringPermutationsDemo()
{
    strBldr = new StringBuilder();

    string result = Permute("ABCD".ToCharArray(), 0);
    MessageBox.Show(result);
}     

static string Permute(char[] elementsList, int startIndex)
{
    if (startIndex == elementsList.Length)
    {
        foreach (char element in elementsList)
        {
            strBldr.Append(" " + element);
        }
        strBldr.AppendLine("");
    }
    else
    {
        for (int tempIndex = startIndex; tempIndex <= elementsList.Length - 1; tempIndex++)
        {
            Swap(ref elementsList[startIndex], ref elementsList[tempIndex]);

            Permute(elementsList, (startIndex + 1));

            Swap(ref elementsList[startIndex], ref elementsList[tempIndex]);
        }
    }

    return strBldr.ToString();
}

static void Swap(ref char Char1, ref char Char2)
{
    char tempElement = Char1;
    Char1 = Char2;
    Char2 = tempElement;
}

Вывод:

1 2 3
1 3 2

2 1 3
2 3 1

3 2 1
3 1 2

Ответ 20

Это мое решение, которое мне легко понять

class ClassicPermutationProblem
{
    ClassicPermutationProblem() { }

    private static void PopulatePosition<T>(List<List<T>> finalList, List<T> list, List<T> temp, int position)
    {
         foreach (T element in list)
         {
             List<T> currentTemp = temp.ToList();
             if (!currentTemp.Contains(element))
                currentTemp.Add(element);
             else
                continue;

             if (position == list.Count)
                finalList.Add(currentTemp);
             else
                PopulatePosition(finalList, list, currentTemp, position + 1);
        }
    }

    public static List<List<int>> GetPermutations(List<int> list)
    {
        List<List<int>> results = new List<List<int>>();
        PopulatePosition(results, list, new List<int>(), 1);
        return results;
     }
}

static void Main(string[] args)
{
    List<List<int>> results = ClassicPermutationProblem.GetPermutations(new List<int>() { 1, 2, 3 });
}

Ответ 21

Если производительность и память являются проблемой, я предлагаю эту очень эффективную реализацию. Согласно алгоритм кучи в Википедии, он должен быть самым быстрым. Надеюсь, это будет соответствовать вашим потребностям:-)!

Как сравнение этого с реализацией Linq за 10! (включая код):

  • Это: 36288000 элементов в 235 миллисекундах
  • Linq: 36288000 элементов в 50051 миллисекундах

    using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Runtime.CompilerServices;
    using System.Text;
    
    namespace WpfPermutations
    {
        /// <summary>
        /// EO: 2016-04-14
        /// Generator of all permutations of an array of anything.
        /// Base on Heap Algorithm. See: https://en.wikipedia.org/wiki/Heap%27s_algorithm#cite_note-3
        /// </summary>
        public static class Permutations
        {
            /// <summary>
            /// Heap algorithm to find all pmermutations. Non recursive, more efficient.
            /// </summary>
            /// <param name="items">Items to permute in each possible ways</param>
            /// <param name="funcExecuteAndTellIfShouldStop"></param>
            /// <returns>Return true if cancelled</returns> 
            public static bool ForAllPermutation<T>(T[] items, Func<T[], bool> funcExecuteAndTellIfShouldStop)
            {
                int countOfItem = items.Length;
    
                if (countOfItem <= 1)
                {
                    return funcExecuteAndTellIfShouldStop(items);
                }
    
                var indexes = new int[countOfItem];
                for (int i = 0; i < countOfItem; i++)
                {
                    indexes[i] = 0;
                }
    
                if (funcExecuteAndTellIfShouldStop(items))
                {
                    return true;
                }
    
                for (int i = 1; i < countOfItem;)
                {
                    if (indexes[i] < i)
                    { // On the web there is an implementation with a multiplication which should be less efficient.
                        if ((i & 1) == 1) // if (i % 2 == 1)  ... more efficient ??? At least the same.
                        {
                            Swap(ref items[i], ref items[indexes[i]]);
                        }
                        else
                        {
                            Swap(ref items[i], ref items[0]);
                        }
    
                        if (funcExecuteAndTellIfShouldStop(items))
                        {
                            return true;
                        }
    
                        indexes[i]++;
                        i = 1;
                    }
                    else
                    {
                        indexes[i++] = 0;
                    }
                }
    
                return false;
            }
    
            /// <summary>
            /// This function is to show a linq way but is far less efficient
            /// </summary>
            /// <typeparam name="T"></typeparam>
            /// <param name="list"></param>
            /// <param name="length"></param>
            /// <returns></returns>
            static IEnumerable<IEnumerable<T>> GetPermutations<T>(IEnumerable<T> list, int length)
            {
                if (length == 1) return list.Select(t => new T[] { t });
    
                return GetPermutations(list, length - 1)
                    .SelectMany(t => list.Where(e => !t.Contains(e)),
                        (t1, t2) => t1.Concat(new T[] { t2 }));
            }
    
            /// <summary>
            /// Swap 2 elements of same type
            /// </summary>
            /// <typeparam name="T"></typeparam>
            /// <param name="a"></param>
            /// <param name="b"></param>
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static void Swap<T>(ref T a, ref T b)
            {
                T temp = a;
                a = b;
                b = temp;
            }
    
            /// <summary>
            /// Func to show how to call. It does a little test for an array of 4 items.
            /// </summary>
            public static void Test()
            {
                ForAllPermutation("123".ToCharArray(), (vals) =>
                {
                    Debug.Print(String.Join("", vals));
                    return false;
                });
    
                int[] values = new int[] { 0, 1, 2, 4 };
    
                Debug.Print("Non Linq");
                ForAllPermutation(values, (vals) =>
                {
                    Debug.Print(String.Join("", vals));
                    return false;
                });
    
                Debug.Print("Linq");
                foreach(var v in GetPermutations(values, values.Length))
                {
                    Debug.Print(String.Join("", v));
                }
    
                // Performance
                int count = 0;
    
                values = new int[10];
                for(int n = 0; n < values.Length; n++)
                {
                    values[n] = n;
                }
    
                Stopwatch stopWatch = new Stopwatch();
                stopWatch.Reset();
                stopWatch.Start();
    
                ForAllPermutation(values, (vals) =>
                {
                    foreach(var v in vals)
                    {
                        count++;
                    }
                    return false;
                });
    
                stopWatch.Stop();
                Debug.Print($"Non Linq {count} items in {stopWatch.ElapsedMilliseconds} millisecs");
    
                count = 0;
                stopWatch.Reset();
                stopWatch.Start();
    
                foreach (var vals in GetPermutations(values, values.Length))
                {
                    foreach (var v in vals)
                    {
                        count++;
                    }
                }
    
                stopWatch.Stop();
                Debug.Print($"Linq {count} items in {stopWatch.ElapsedMilliseconds} millisecs");
    
            }
        }
    }
    

Ответ 22

Вот еще одна реализация упомянутого алго.

public class Program
{
    public static void Main(string[] args)
    {
        string str = "abcefgh";
        var astr = new Permutation().GenerateFor(str);
        Console.WriteLine(astr.Length);
        foreach(var a in astr)
        {
            Console.WriteLine(a);
        }
        //a.ForEach(Console.WriteLine);
    }
}

class Permutation
{
    public string[] GenerateFor(string s)
    {  

        if(s.Length == 1)
        {

            return new []{s}; 
        }

        else if(s.Length == 2)
        {

            return new []{s[1].ToString()+s[0].ToString(),s[0].ToString()+s[1].ToString()};

        }

        var comb = new List<string>();

        foreach(var c in s)
        {

            string cStr = c.ToString();

            var sToProcess = s.Replace(cStr,"");
            if (!string.IsNullOrEmpty(sToProcess) && sToProcess.Length>0)
            {
                var conCatStr = GenerateFor(sToProcess);



                foreach(var a in conCatStr)
                {
                    comb.Add(c.ToString()+a);
                }


            }
        }
        return comb.ToArray();

    }
}

Ответ 23

Перечисляет перестановки строки. Избегает дублирования при повторении символов:

using System;
using System.Collections;

class Permutation{
  static IEnumerable Permutations(string word){
    if (word == null || word.Length <= 1) {
      yield return word;
      yield break;
    }

    char firstChar = word[0];
    foreach( string subPermute in Permutations (word.Substring (1)) ) {
      int indexOfFirstChar = subPermute.IndexOf (firstChar);
      if (indexOfFirstChar == -1) indexOfFirstChar = subPermute.Length;

      for( int index = 0; index <= indexOfFirstChar; index++ )
        yield return subPermute.Insert (index, new string (firstChar, 1));
    }
  }

  static void Main(){
    foreach( var permutation in Permutations ("aab") )
      Console.WriteLine (permutation);
  }
}

Ответ 24

class Permutation
{
    public static List<string> Permutate(string seed, List<string> lstsList)
    {
        loopCounter = 0;
        // string s="\w{0,2}";
        var lstStrs = PermuateRecursive(seed);

        Trace.WriteLine("Loop counter :" + loopCounter);
        return lstStrs;
    }

    // Recursive function to find permutation
    private static List<string> PermuateRecursive(string seed)
    {
        List<string> lstStrs = new List<string>();

        if (seed.Length > 2)
        {
            for (int i = 0; i < seed.Length; i++)
            {
                str = Swap(seed, 0, i);

                PermuateRecursive(str.Substring(1, str.Length - 1)).ForEach(
                    s =>
                    {
                        lstStrs.Add(str[0] + s);
                        loopCounter++;
                    });
                ;
            }
        }
        else
        {
            lstStrs.Add(seed);
            lstStrs.Add(Swap(seed, 0, 1));
        }
        return lstStrs;
    }
    //Loop counter variable to count total number of loop execution in various functions
    private static int loopCounter = 0;

    //Non recursive  version of permuation function
    public static List<string> Permutate(string seed)
    {
        loopCounter = 0;
        List<string> strList = new List<string>();
        strList.Add(seed);
        for (int i = 0; i < seed.Length; i++)
        {
            int count = strList.Count;
            for (int j = i + 1; j < seed.Length; j++)
            {
                for (int k = 0; k < count; k++)
                {
                    strList.Add(Swap(strList[k], i, j));
                    loopCounter++;
                }
            }
        }
        Trace.WriteLine("Loop counter :" + loopCounter);
        return strList;
    }

    private static string Swap(string seed, int p, int p2)
    {
        Char[] chars = seed.ToCharArray();
        char temp = chars[p2];
        chars[p2] = chars[p];
        chars[p] = temp;
        return new string(chars);
    }
}

Ответ 25

    /// <summary>
    /// Print All the Permutations.
    /// </summary>
    /// <param name="inputStr">input string</param>
    /// <param name="strLength">length of the string</param>
    /// <param name="outputStr">output string</param>
    private void PrintAllPermutations(string inputStr, int strLength,string outputStr, int NumberOfChars)
    {
        //Means you have completed a permutation.
        if (outputStr.Length == NumberOfChars)
        {
            Console.WriteLine(outputStr);                
            return;
        }

        //For loop is used to print permutations starting with every character. first print all the permutations starting with a,then b, etc.
        for(int i=0 ; i< strLength; i++)
        {
            // Recursive call : for a string abc = a + perm(bc). b+ perm(ac) etc.
            PrintAllPermutations(inputStr.Remove(i, 1), strLength - 1, outputStr + inputStr.Substring(i, 1), 4);
        }
    }