Как я могу создать список всех возможных перестановок строки между символами x и y в длину, содержащий список переменных символов.
Любой язык будет работать, но он должен быть портативным.
Как я могу создать список всех возможных перестановок строки между символами x и y в длину, содержащий список переменных символов.
Любой язык будет работать, но он должен быть портативным.
Есть несколько способов сделать это. Общие методы используют рекурсию, память или динамическое программирование. Основная идея заключается в том, что вы создаете список всех строк длины 1, а затем на каждой итерации для всех строк, созданных в последней итерации, добавляете эту строку, конкатенированную с каждым символом в строке отдельно. (индекс переменной в приведенном ниже коде отслеживает начало последней и следующей итерации)
Некоторые псевдокоды:
list = originalString.split('')
index = (0,0)
list = [""]
for iteration n in 1 to y:
index = (index[1], len(list))
for string s in list.subset(index[0] to end):
for character c in originalString:
list.add(s + c)
вам нужно будет удалить все строки меньше длины x, они будут первыми (x-1) * len (originalString) в списке.
Лучше использовать backtracking
#include <stdio.h>
#include <string.h>
void swap(char *a, char *b) {
char temp;
temp = *a;
*a = *b;
*b = temp;
}
void print(char *a, int i, int n) {
int j;
if(i == n) {
printf("%s\n", a);
} else {
for(j = i; j <= n; j++) {
swap(a + i, a + j);
print(a, i + 1, n);
swap(a + i, a + j);
}
}
}
int main(void) {
char a[100];
gets(a);
print(a, 0, strlen(a) - 1);
return 0;
}
Вы получите много строк, это точно...
Где x и y - это то, как вы их определяете, а r - количество символов, которые мы выбираем из --if. Я вас правильно понимаю. Вы должны определенно сгенерировать их по мере необходимости, а не становиться неряшливыми и, скажем, генерировать powerset, а затем фильтровать длину строк.
Следующее, безусловно, не лучший способ их создания, но, тем не менее, это интересный вопрос.
Кнут (том 4, глава 2, 7.2.1.3) говорит нам, что (s, t) -combination эквивалентно s + 1 вещам, взятым t за один раз с повторением - an (s, t) -combination является обозначением используется Кнутом, равным . Мы можем выяснить это, сначала сгенерировав каждое (s, t) -combination в двоичной форме (т.е. длины (s + t)) и посчитав число 0 слева от каждого 1.
10001000011101 → становится перестановкой: {0, 3, 4, 4, 4, 1}
Нерекурсивное решение по примеру Кнута, Python:
def nextPermutation(perm):
k0 = None
for i in range(len(perm)-1):
if perm[i]<perm[i+1]:
k0=i
if k0 == None:
return None
l0 = k0+1
for i in range(k0+1, len(perm)):
if perm[k0] < perm[i]:
l0 = i
perm[k0], perm[l0] = perm[l0], perm[k0]
perm[k0+1:] = reversed(perm[k0+1:])
return perm
perm=list("12345")
while perm:
print perm
perm = nextPermutation(perm)
Вы можете посмотреть на " Эффективно перечислить подмножества набора", в котором описывается алгоритм, чтобы сделать часть того, что вы хотите - быстро генерировать все подмножества из N символов от длины x до y. Он содержит реализацию в C.
Для каждого подмножества вам все равно придется сгенерировать все перестановки. Например, если вам нужны 3 символа из "abcde", этот алгоритм даст вам "abc", "abd", "abe"... но вам придется переставлять каждый, чтобы получить "acb", "bac", "bca" и т.д.
Некоторые рабочие Java-коды на основе Sarp answer:
public class permute {
static void permute(int level, String permuted,
boolean used[], String original) {
int length = original.length();
if (level == length) {
System.out.println(permuted);
} else {
for (int i = 0; i < length; i++) {
if (!used[i]) {
used[i] = true;
permute(level + 1, permuted + original.charAt(i),
used, original);
used[i] = false;
}
}
}
}
public static void main(String[] args) {
String s = "hello";
boolean used[] = {false, false, false, false, false};
permute(0, "", used, s);
}
}
Вот простое решение в С#.
Он генерирует только отдельные перестановки заданной строки.
static public IEnumerable<string> permute(string word)
{
if (word.Length > 1)
{
char character = word[0];
foreach (string subPermute in permute(word.Substring(1)))
{
for (int index = 0; index <= subPermute.Length; index++)
{
string pre = subPermute.Substring(0, index);
string post = subPermute.Substring(index);
if (post.Contains(character))
continue;
yield return pre + character + post;
}
}
}
else
{
yield return word;
}
}
Здесь есть много хороших ответов. Я также предлагаю очень простое рекурсивное решение в С++.
#include <string>
#include <iostream>
template<typename Consume>
void permutations(std::string s, Consume consume, std::size_t start = 0) {
if (start == s.length()) consume(s);
for (std::size_t i = start; i < s.length(); i++) {
std::swap(s[start], s[i]);
permutations(s, consume, start + 1);
}
}
int main(void) {
std::string s = "abcd";
permutations(s, [](std::string s) {
std::cout << s << std::endl;
});
}
Примечание: строки с повторяющимися символами не будут создавать уникальные перестановки.
Я просто взбивал это быстро в Ruby:
def perms(x, y, possible_characters)
all = [""]
current_array = all.clone
1.upto(y) { |iteration|
next_array = []
current_array.each { |string|
possible_characters.each { |c|
value = string + c
next_array.insert next_array.length, value
all.insert all.length, value
}
}
current_array = next_array
}
all.delete_if { |string| string.length < x }
end
Вы можете заглянуть в язык API для встроенных функций типа перестановок, и вы можете написать более оптимизированный код, но если числа будут такими высокими, я не уверен, что есть много способов, много результатов.
В любом случае идея кода начинается с строки длиной 0, а затем отслеживает все строки длины Z, где Z - текущий размер итерации. Затем пройдите через каждую строку и добавьте каждый символ в каждую строку. Наконец, в конце, удалите все, которые были ниже порогового значения x, и верните результат.
Я не тестировал его с потенциально бессмысленным вводом (список нулевых символов, странные значения x и y и т.д.).
Это перевод версии Майка Руби в Common Lisp:
(defun perms (x y original-string)
(loop with all = (list "")
with current-array = (list "")
for iteration from 1 to y
do (loop with next-array = nil
for string in current-array
do (loop for c across original-string
for value = (concatenate 'string string (string c))
do (push value next-array)
(push value all))
(setf current-array (reverse next-array)))
finally (return (nreverse (delete-if #'(lambda (el) (< (length el) x)) all)))))
И еще одна версия, немного короче и использующая больше возможностей объекта цикла:
(defun perms (x y original-string)
(loop repeat y
collect (loop for string in (or (car (last sets)) (list ""))
append (loop for c across original-string
collect (concatenate 'string string (string c)))) into sets
finally (return (loop for set in sets
append (loop for el in set when (>= (length el) x) collect el)))))
Рекурсивное решение в С++
int main (int argc, char * const argv[]) {
string s = "sarp";
bool used [4];
permute(0, "", used, s);
}
void permute(int level, string permuted, bool used [], string &original) {
int length = original.length();
if(level == length) { // permutation complete, display
cout << permuted << endl;
} else {
for(int i=0; i<length; i++) { // try to add an unused character
if(!used[i]) {
used[i] = true;
permute(level+1, original[i] + permuted, used, original); // find the permutations starting with this string
used[i] = false;
}
}
}
Вот простое рекурсивное решение С#:
Метод:
public ArrayList CalculateWordPermutations(string[] letters, ArrayList words, int index)
{
bool finished = true;
ArrayList newWords = new ArrayList();
if (words.Count == 0)
{
foreach (string letter in letters)
{
words.Add(letter);
}
}
for(int j=index; j<words.Count; j++)
{
string word = (string)words[j];
for(int i =0; i<letters.Length; i++)
{
if(!word.Contains(letters[i]))
{
finished = false;
string newWord = (string)word.Clone();
newWord += letters[i];
newWords.Add(newWord);
}
}
}
foreach (string newWord in newWords)
{
words.Add(newWord);
}
if(finished == false)
{
CalculateWordPermutations(letters, words, words.Count - newWords.Count);
}
return words;
}
Вызов:
string[] letters = new string[]{"a","b","c"};
ArrayList words = CalculateWordPermutations(letters, new ArrayList(), 0);
В Perl, если вы хотите ограничить себя строчным алфавитом, вы можете сделать это:
my @result = ("a" .. "zzzz");
Это дает все возможные строки от 1 до 4 символов с помощью строчных символов. Для прописных букв измените "a"
на "a"
и "zzzz"
на "zzzz"
.
В смешанном случае он становится намного сложнее и, вероятно, не справляется с одним из таких встроенных операторов Perl.
... и вот версия C:
void permute(const char *s, char *out, int *used, int len, int lev)
{
if (len == lev) {
out[lev] = '\0';
puts(out);
return;
}
int i;
for (i = 0; i < len; ++i) {
if (! used[i])
continue;
used[i] = 1;
out[lev] = s[i];
permute(s, out, used, len, lev + 1);
used[i] = 0;
}
return;
}
перестановка (ABC) → A.perm(BC) → A.perm [B.perm(C)] → A.perm [(* B C), (C < сильная > B *)] → [( * A BC), (B A C), (BC A *), ( * A CB), (C A B), (CB A *)] Чтобы удалить дубликаты при вставке каждой проверки алфавита, чтобы увидеть, заканчивается ли предыдущая строка с тем же алфавитом (почему? -exercise)
public static void main(String[] args) {
for (String str : permStr("ABBB")){
System.out.println(str);
}
}
static Vector<String> permStr(String str){
if (str.length() == 1){
Vector<String> ret = new Vector<String>();
ret.add(str);
return ret;
}
char start = str.charAt(0);
Vector<String> endStrs = permStr(str.substring(1));
Vector<String> newEndStrs = new Vector<String>();
for (String endStr : endStrs){
for (int j = 0; j <= endStr.length(); j++){
if (endStr.substring(0, j).endsWith(String.valueOf(start)))
break;
newEndStrs.add(endStr.substring(0, j) + String.valueOf(start) + endStr.substring(j));
}
}
return newEndStrs;
}
Печать всех перестановок без дубликатов
Ответ на Ruby, который работает:
class String
def each_char_with_index
0.upto(size - 1) do |index|
yield(self[index..index], index)
end
end
def remove_char_at(index)
return self[1..-1] if index == 0
self[0..(index-1)] + self[(index+1)..-1]
end
end
def permute(str, prefix = '')
if str.size == 0
puts prefix
return
end
str.each_char_with_index do |char, index|
permute(str.remove_char_at(index), prefix + char)
end
end
# example
# permute("abc")
Следующая рекурсия Java печатает все перестановки заданной строки:
//call it as permut("",str);
public void permut(String str1,String str2){
if(str2.length() != 0){
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
permut(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}else{
System.out.println(str1);
}
}
Ниже приведена обновленная версия вышеперечисленного метода "перестановки", которая делает n! (n факториал) менее рекурсивных вызовов по сравнению с указанным выше методом.
//call it as permut("",str);
public void permut(String str1,String str2){
if(str2.length() > 1){
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
permut(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}else{
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
System.out.println(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}
}
import java.util.*;
public class all_subsets {
public static void main(String[] args) {
String a = "abcd";
for(String s: all_perm(a)) {
System.out.println(s);
}
}
public static Set<String> concat(String c, Set<String> lst) {
HashSet<String> ret_set = new HashSet<String>();
for(String s: lst) {
ret_set.add(c+s);
}
return ret_set;
}
public static HashSet<String> all_perm(String a) {
HashSet<String> set = new HashSet<String>();
if(a.length() == 1) {
set.add(a);
} else {
for(int i=0; i<a.length(); i++) {
set.addAll(concat(a.charAt(i)+"", all_perm(a.substring(0, i)+a.substring(i+1, a.length()))));
}
}
return set;
}
}
Здесь появилась нерекурсивная версия, в javascript. Он не основан на нерекурсивном Knuth выше, хотя он имеет некоторые сходства в элементарной свопинге. Я проверил его правильность для входных массивов до 8 элементов.
Быстрая оптимизация будет предубеждать массив out
и избежать push()
.
Основная идея:
Для одного исходного массива создайте первый новый набор массивов, которые поочередно меняют первый элемент с каждым последующим элементом, каждый раз оставляя остальные элементы невозмутимыми. например: с учетом 1234, генерировать 1234, 2134, 3214, 4231.
Используйте каждый массив из предыдущего прохода в качестве семени для нового прохода, но вместо того, чтобы менять первый элемент, замените второй элемент на каждый последующий элемент. Кроме того, на этот раз не включайте исходный массив в выходной файл.
Повторите шаг 2 до завершения.
Вот пример кода:
function oxe_perm(src, depth, index)
{
var perm = src.slice(); // duplicates src.
perm = perm.split("");
perm[depth] = src[index];
perm[index] = src[depth];
perm = perm.join("");
return perm;
}
function oxe_permutations(src)
{
out = new Array();
out.push(src);
for (depth = 0; depth < src.length; depth++) {
var numInPreviousPass = out.length;
for (var m = 0; m < numInPreviousPass; ++m) {
for (var n = depth + 1; n < src.length; ++n) {
out.push(oxe_perm(out[m], depth, n));
}
}
}
return out;
}
Я не уверен, почему вы хотели бы сделать это в первую очередь. Полученный набор для любых умеренно больших значений x и y будет огромным и будет экспоненциально расти, так как x и/или y будут больше.
Предположим, что ваш набор возможных символов - это 26 строчных букв алфавита, и вы попросите свое приложение сгенерировать все перестановки, где длина = 5. Предполагая, что у вас не хватает памяти, вы получите 11 881 376 (т.е. 26 к силе 5). Увеличьте эту длину до 6, и вы получите 308 915 776 строк назад. Эти цифры очень тяжелы, очень быстро.
Вот решение, которое я собрал в Java. Вам нужно предоставить два аргумента времени выполнения (соответствующие x и y). Получайте удовольствие.
public class GeneratePermutations {
public static void main(String[] args) {
int lower = Integer.parseInt(args[0]);
int upper = Integer.parseInt(args[1]);
if (upper < lower || upper == 0 || lower == 0) {
System.exit(0);
}
for (int length = lower; length <= upper; length++) {
generate(length, "");
}
}
private static void generate(int length, String partial) {
if (length <= 0) {
System.out.println(partial);
} else {
for (char c = 'a'; c <= 'z'; c++) {
generate(length - 1, partial + c);
}
}
}
}
Мне это нужно сегодня, и хотя ответы, которые уже были указаны, указывают мне в правильном направлении, они не совсем то, что я хотел.
Здесь выполняется реализация с использованием метода кучи. Длина массива должна быть не менее 3 и для практических соображений не должна быть больше 10 или около того, в зависимости от того, что вы хотите сделать, терпения и тактовой частоты.
Прежде чем вводить свой цикл, инициализируйте Perm(1 To N)
первой перестановкой Stack(3 To N)
с нулями * и Level
с помощью 2
**. В конце цикла вызовите NextPerm
, который вернет false, когда мы закончим.
* VB сделает это за вас.
** Вы можете немного изменить NextPerm, чтобы сделать это ненужным, но это яснее.
Option Explicit
Function NextPerm(Perm() As Long, Stack() As Long, Level As Long) As Boolean
Dim N As Long
If Level = 2 Then
Swap Perm(1), Perm(2)
Level = 3
Else
While Stack(Level) = Level - 1
Stack(Level) = 0
If Level = UBound(Stack) Then Exit Function
Level = Level + 1
Wend
Stack(Level) = Stack(Level) + 1
If Level And 1 Then N = 1 Else N = Stack(Level)
Swap Perm(N), Perm(Level)
Level = 2
End If
NextPerm = True
End Function
Sub Swap(A As Long, B As Long)
A = A Xor B
B = A Xor B
A = A Xor B
End Sub
'This is just for testing.
Private Sub Form_Paint()
Const Max = 8
Dim A(1 To Max) As Long, I As Long
Dim S(3 To Max) As Long, J As Long
Dim Test As New Collection, T As String
For I = 1 To UBound(A)
A(I) = I
Next
Cls
ScaleLeft = 0
J = 2
Do
If CurrentY + TextHeight("0") > ScaleHeight Then
ScaleLeft = ScaleLeft - TextWidth(" 0 ") * (UBound(A) + 1)
CurrentY = 0
CurrentX = 0
End If
T = vbNullString
For I = 1 To UBound(A)
Print A(I);
T = T & Hex(A(I))
Next
Print
Test.Add Null, T
Loop While NextPerm(A, S, J)
J = 1
For I = 2 To UBound(A)
J = J * I
Next
If J <> Test.Count Then Stop
End Sub
Другие методы описаны различными авторами. Кнут описывает два, один дает лексический порядок, но является сложным и медленным, другой известен как метод простых изменений. Jie Gao и Dianjun Wang также написал интересную статью.
В рубине:
str = "a"
100_000_000.times {puts str.next!}
Это довольно быстро, но это займет некоторое время =). Конечно, вы можете начать с "aaaaaaaa", если короткие строки вам не интересны.
Возможно, я неверно истолковал фактический вопрос - на одном из сообщений он звучал так, как будто вам просто нужна была строка с строкой strutforce, но в главном вопросе кажется, что вам нужно перестановочить определенную строку.
Ваша проблема несколько похожа на эту: http://beust.com/weblog/archives/000491.html (список всех целых чисел, в которых ни одна из цифр не повторяется, что привело к на множестве языков, решающих его, с парнем ocaml, использующим перестановки, и некоторым java-парнем, использующим еще одно решение).
Этот код в python, при вызове с allowed_characters
, установленным на [0,1]
и максимум 4 символа, будет генерировать 2 ^ 4 результата:
['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']
def generate_permutations(chars = 4) :
#modify if in need!
allowed_chars = [
'0',
'1',
]
status = []
for tmp in range(chars) :
status.append(0)
last_char = len(allowed_chars)
rows = []
for x in xrange(last_char ** chars) :
rows.append("")
for y in range(chars - 1 , -1, -1) :
key = status[y]
rows[x] = allowed_chars[key] + rows[x]
for pos in range(chars - 1, -1, -1) :
if(status[pos] == last_char - 1) :
status[pos] = 0
else :
status[pos] += 1
break;
return rows
import sys
print generate_permutations()
Надеюсь, это вам полезно. Работает с любым символом, а не только с цифрами
Вот ссылка, которая описывает, как печатать перестановки строки. http://nipun-linuxtips.blogspot.in/2012/11/print-all-permutations-of-characters-in.html
Хотя это точно не отвечает на ваш вопрос, вот один из способов генерировать каждую перестановку букв из нескольких строк одной длины: например, если ваши слова были "кофе", "joomla" и "moodle", вы можете ожидать вывод, например, "coodle", "joodee", "joffle" и т.д.
В принципе, количество комбинаций - это количество слов (количество слов) в степени (количество букв на слово). Итак, выберите случайное число между 0 и числом комбинаций - 1, преобразуйте это число в базу (количество слов), затем используйте каждую цифру этого числа в качестве индикатора, для которого слово принимает следующую букву.
например: в приведенном выше примере. 3 слова, 6 букв = 729 комбинаций. Выберите случайное число: 465. Преобразуйте в базу 3: 122020. Возьмите первую букву из слова 1, 2-й из слова 2, 3-го из слова 2, 4-го из слова 0... и получите... "joofle".
Если вы хотите все перестановки, просто зациклируйте от 0 до 728. Конечно, если вы просто выбираете одно случайное значение, более простой менее запутанный способ заключается в буквы. Этот метод позволяет избежать рекурсии, если вы хотите все перестановки, а также заставляет вас выглядеть так, как вы знаете Maths (tm)!
Если количество комбинаций является чрезмерным, вы можете разбить его на ряд меньших слов и объединить их в конце.
С# итеративный:
public List<string> Permutations(char[] chars)
{
List<string> words = new List<string>();
words.Add(chars[0].ToString());
for (int i = 1; i < chars.Length; ++i)
{
int currLen = words.Count;
for (int j = 0; j < currLen; ++j)
{
var w = words[j];
for (int k = 0; k <= w.Length; ++k)
{
var nstr = w.Insert(k, chars[i].ToString());
if (k == 0)
words[j] = nstr;
else
words.Add(nstr);
}
}
}
return words;
}
Существует итеративная реализация Java в UncommonsMaths (работает для списка объектов):
/**
* Generate the indices into the elements array for the next permutation. The
* algorithm is from Kenneth H. Rosen, Discrete Mathematics and its
* Applications, 2nd edition (NY: McGraw-Hill, 1991), p. 284)
*/
private void generateNextPermutationIndices()
{
if (remainingPermutations == 0)
{
throw new IllegalStateException("There are no permutations " +
"remaining. Generator must be reset to continue using.");
}
else if (remainingPermutations < totalPermutations)
{
// Find largest index j with
// permutationIndices[j] < permutationIndices[j + 1]
int j = permutationIndices.length - 2;
while (permutationIndices[j] > permutationIndices[j + 1])
{
j--;
}
// Find index k such that permutationIndices[k] is smallest integer
// greater than permutationIndices[j] to the right
// of permutationIndices[j].
int k = permutationIndices.length - 1;
while (permutationIndices[j] > permutationIndices[k])
{
k--;
}
// Interchange permutation indices.
int temp = permutationIndices[k];
permutationIndices[k] = permutationIndices[j];
permutationIndices[j] = temp;
// Put tail end of permutation after jth position in increasing order.
int r = permutationIndices.length - 1;
int s = j + 1;
while (r > s)
{
temp = permutationIndices[s];
permutationIndices[s] = permutationIndices[r];
permutationIndices[r] = temp;
r--;
s++;
}
}
--remainingPermutations;
}
/**
* Generate the next permutation and return a list containing
* the elements in the appropriate order. This overloaded method
* allows the caller to provide a list that will be used and returned.
* The purpose of this is to improve performance when iterating over
* permutations. If the {@link #nextPermutationAsList()} method is
* used it will create a new list every time. When iterating over
* permutations this will result in lots of short-lived objects that
* have to be garbage collected. This method allows a single list
* instance to be reused in such circumstances.
* @param destination Provides a list to use to create the
* permutation. This is the list that will be returned, once
* it has been filled with the elements in the appropriate order.
* @return The next permutation as a list.
*/
public List<T> nextPermutationAsList(List<T> destination)
{
generateNextPermutationIndices();
// Generate actual permutation.
destination.clear();
for (int i : permutationIndices)
{
destination.add(elements[i]);
}
return destination;
}
Рекурсивное решение в python. Хорошая вещь об этом коде заключается в том, что он экспортирует словарь, с ключами как строки и всеми возможными перестановками в качестве значений. Все возможные длины строк включены, поэтому вы создаете надмножество.
Если вам нужны только окончательные перестановки, вы можете удалить другие слова из словаря.
В этом коде словарь перестановок глобальный.
В базовом случае я сохраняю значение как обе возможности в списке. perms['ab'] = ['ab','ba']
.
Для более высоких длин строк функция ссылается на более низкие длины строк и включает ранее вычисленные перестановки.
Функция выполняет две функции:
Дорогой для памяти.
perms = {}
def perm(input_string):
global perms
if input_string in perms:
return perms[input_string] # This will send a list of all permutations
elif len(input_string) == 2:
perms[input_string] = [input_string, input_string[-1] + input_string [-2]]
return perms[input_string]
else:
perms[input_string] = []
for index in range(0, len(input_string)):
new_string = input_string[0:index] + input_string[index +1:]
perm(new_string)
for entries in perms[new_string]:
perms[input_string].append(input_string[index] + entries)
return perms[input_string]
def gen( x,y,list): #to generate all strings inserting y at different positions
list = []
list.append( y+x )
for i in range( len(x) ):
list.append( func(x,0,i) + y + func(x,i+1,len(x)-1) )
return list
def func( x,i,j ): #returns x[i..j]
z = ''
for i in range(i,j+1):
z = z+x[i]
return z
def perm( x , length , list ): #perm function
if length == 1 : # base case
list.append( x[len(x)-1] )
return list
else:
lists = perm( x , length-1 ,list )
lists_temp = lists #temporarily storing the list
lists = []
for i in range( len(lists_temp) ) :
list_temp = gen(lists_temp[i],x[length-2],lists)
lists += list_temp
return lists
Рекурсивное решение с помощью метода main()
.
public class AllPermutationsOfString {
public static void stringPermutations(String newstring, String remaining) {
if(remaining.length()==0)
System.out.println(newstring);
for(int i=0; i<remaining.length(); i++) {
String newRemaining = remaining.replaceFirst(remaining.charAt(i)+"", "");
stringPermutations(newstring+remaining.charAt(i), newRemaining);
}
}
public static void main(String[] args) {
String string = "abc";
AllPermutationsOfString.stringPermutations("", string);
}
}