Построение 2D-карты тепла с помощью Matplotlib

Используя Matplotlib, я хочу построить 2D-карту тепла. Мои данные представляют собой массив n-by-n Numpy, каждый из которых имеет значение от 0 до 1. Итак, для элемента (i, j) этого массива я хочу построить квадрат в координате (i, j) в моей тепловая карта, цвет которой пропорционален значению элемента в массиве.

Как я могу это сделать?

Ответ 1

Функция imshow() с параметрами interpolation='nearest' cmap='hot' interpolation='nearest' и cmap='hot' должна делать то, что вы хотите.

import matplotlib.pyplot as plt
import numpy as np

a = np.random.random((16, 16))
plt.imshow(a, cmap='hot', interpolation='nearest')
plt.show()

enter image description here

Ответ 2

Seaborn выполняет большую часть ручной работы и автоматически отображает градиент на стороне графика и т.д.

import numpy as np
import seaborn as sns
import matplotlib.pylab as plt

uniform_data = np.random.rand(10, 12)
ax = sns.heatmap(uniform_data, linewidth=0.5)
plt.show()

enter image description here

Или вы можете даже построить верхний/нижний левый/правый треугольники квадратных матриц, например корреляционную матрицу, которая является квадратной и симметричной, так что построение всех значений в любом случае будет избыточным.

corr = np.corrcoef(np.random.randn(10, 200))
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
    ax = sns.heatmap(corr, mask=mask, vmax=.3, square=True,  cmap="YlGnBu")
    plt.show()

enter image description here

Ответ 3

Вот как это сделать из CSV:

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata

# Load data from CSV
dat = np.genfromtxt('dat.xyz', delimiter=' ',skip_header=0)
X_dat = dat[:,0]
Y_dat = dat[:,1]
Z_dat = dat[:,2]

# Convert from pandas dataframes to numpy arrays
X, Y, Z, = np.array([]), np.array([]), np.array([])
for i in range(len(X_dat)):
        X = np.append(X, X_dat[i])
        Y = np.append(Y, Y_dat[i])
        Z = np.append(Z, Z_dat[i])

# create x-y points to be used in heatmap
xi = np.linspace(X.min(), X.max(), 1000)
yi = np.linspace(Y.min(), Y.max(), 1000)

# Z is a matrix of x-y values
zi = griddata((X, Y), Z, (xi[None,:], yi[:,None]), method='cubic')

# I control the range of my colorbar by removing data 
# outside of my range of interest
zmin = 3
zmax = 12
zi[(zi<zmin) | (zi>zmax)] = None

# Create the contour plot
CS = plt.contourf(xi, yi, zi, 15, cmap=plt.cm.rainbow,
                  vmax=zmax, vmin=zmin)
plt.colorbar()  
plt.show()

где dat.xyz находится в форме

x1 y1 z1
x2 y2 z2
...

Ответ 4

Я бы использовал функцию matplotlib pcolor/pcolormesh, поскольку она допускает неравномерный интервал данных.

Пример взят из matplotlib:

import matplotlib.pyplot as plt
import numpy as np

# generate 2 2d grids for the x & y bounds
y, x = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100))

z = (1 - x / 2. + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
# x and y are bounds, so z should be the value *inside* those bounds.
# Therefore, remove the last value from the z array.
z = z[:-1, :-1]
z_min, z_max = -np.abs(z).max(), np.abs(z).max()

fig, ax = plt.subplots()

c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max)
ax.set_title('pcolormesh')
# set the limits of the plot to the limits of the data
ax.axis([x.min(), x.max(), y.min(), y.max()])
fig.colorbar(c, ax=ax)

plt.show()

pcolormesh plot output

Ответ 5

Для numpy массива просто используйте imshow():

import matplotlib.pyplot as plt
import numpy as np


def heatmap2d(arr: np.ndarray):
    plt.imshow(arr, cmap='viridis')
    plt.colorbar()
    plt.show()


test_array = np.arange(100 * 100).reshape(100, 100)
heatmap2d(test_array)

The heatmap of the example code

Этот код создает непрерывную тепловую карту.

Вы можете выбрать другую встроенную colormap здесь.