Я пытаюсь реализовать модель мыслей с пропуском с использованием тензорного потока, и текущая версия помещена здесь.
В настоящее время я использую один графический процессор моей машины (всего 2 графических процессора), и информация о графическом процессоре
2017-09-06 11:29:32.657299: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties:
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.683
pciBusID 0000:02:00.0
Total memory: 10.91GiB
Free memory: 10.75GiB
Однако я получаю OOM, когда пытаюсь передать данные в модель. Я пытаюсь выполнить отладку следующим образом:
Я использую следующий фрагмент сразу после запуска sess.run(tf.global_variables_initializer())
logger.info('Total: {} params'.format(
np.sum([
np.prod(v.get_shape().as_list())
for v in tf.trainable_variables()
])))
и получил 2017-09-06 11:29:51,333 INFO main main.py:127 - Total: 62968629 params
, примерно около 240Mb
, если все использовали tf.float32
. Выходной сигнал tf.global_variables
равен
[<tf.Variable 'embedding/embedding_matrix:0' shape=(155229, 200) dtype=float32_ref>,
<tf.Variable 'encoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
<tf.Variable 'encoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
<tf.Variable 'encoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
<tf.Variable 'encoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
<tf.Variable 'decoder/weights:0' shape=(200, 155229) dtype=float32_ref>,
<tf.Variable 'decoder/biases:0' shape=(155229,) dtype=float32_ref>,
<tf.Variable 'decoder/previous_decoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
<tf.Variable 'decoder/previous_decoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
<tf.Variable 'decoder/previous_decoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
<tf.Variable 'decoder/previous_decoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
<tf.Variable 'decoder/next_decoder/rnn/gru_cell/gates/kernel:0' shape=(400, 400) dtype=float32_ref>,
<tf.Variable 'decoder/next_decoder/rnn/gru_cell/gates/bias:0' shape=(400,) dtype=float32_ref>,
<tf.Variable 'decoder/next_decoder/rnn/gru_cell/candidate/kernel:0' shape=(400, 200) dtype=float32_ref>,
<tf.Variable 'decoder/next_decoder/rnn/gru_cell/candidate/bias:0' shape=(200,) dtype=float32_ref>,
<tf.Variable 'global_step:0' shape=() dtype=int32_ref>]
В моей обучающей фразе у меня есть массив данных, форма которого (164652, 3, 30)
, а именно sample_size x 3 x time_step
, здесь 3
означает предыдущее предложение, текущее предложение и следующее предложение. Размер этих обучающих данных составляет около 57Mb
и хранится в loader
. Затем я использую функцию генератора для получения предложений, выглядит как
def iter_batches(self, batch_size=128, time_major=True, shuffle=True):
num_samples = len(self._sentences)
if shuffle:
samples = self._sentences[np.random.permutation(num_samples)]
else:
samples = self._sentences
batch_start = 0
while batch_start < num_samples:
batch = samples[batch_start:batch_start + batch_size]
lens = (batch != self._vocab[self._vocab.pad_token]).sum(axis=2)
y, x, z = batch[:, 0, :], batch[:, 1, :], batch[:, 2, :]
if time_major:
yield (y.T, lens[:, 0]), (x.T, lens[:, 1]), (z.T, lens[:, 2])
else:
yield (y, lens[:, 0]), (x, lens[:, 1]), (z, lens[:, 2])
batch_start += batch_size
Учебный цикл выглядит как
for epoch in num_epochs:
batches = loader.iter_batches(batch_size=args.batch_size)
try:
(y, y_lens), (x, x_lens), (z, z_lens) = next(batches)
_, summaries, loss_val = sess.run(
[train_op, train_summary_op, st.loss],
feed_dict={
st.inputs: x,
st.sequence_length: x_lens,
st.previous_targets: y,
st.previous_target_lengths: y_lens,
st.next_targets: z,
st.next_target_lengths: z_lens
})
except StopIteraton:
...
Тогда я получил ООМ. Если я закомментирую все тело try
(нет для подачи данных), сценарий будет работать нормально.
Я понятия не имею, почему я получил OOM в таком маленьком масштабе данных. Используя nvidia-smi
, я всегда получал
Wed Sep 6 12:03:37 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.59 Driver Version: 384.59 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:02:00.0 Off | N/A |
| 0% 44C P2 60W / 275W | 10623MiB / 11172MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... Off | 00000000:03:00.0 Off | N/A |
| 0% 43C P2 62W / 275W | 10621MiB / 11171MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 32748 C python3 10613MiB |
| 1 32748 C python3 10611MiB |
+-----------------------------------------------------------------------------+
Я не вижу фактического использования моего скрипта в графическом процессоре, так как тензор потока всегда крадет всю память в начале. И настоящая проблема здесь в том, что я не знаю, как это отладить.
Я прочитал несколько постов о OOM на Qaru. Большинство из них произошло при подаче данных большого набора тестов в модель, а подача данных небольшими партиями может избежать этой проблемы. Но я не вижу, почему такая маленькая комбинация данных и параметров сосет в моем 11Gb 1080Ti, так как из-за ошибки он просто пытается выделить размер матрицы [3840 x 155229]
. (Выходная матрица декодера, 3840 = 30(time_steps) x 128(batch_size)
, 155229
является vocab_size).
2017-09-06 12:14:45.787566: W tensorflow/core/common_runtime/bfc_allocator.cc:277] ********************************************************************************************xxxxxxxx
2017-09-06 12:14:45.787597: W tensorflow/core/framework/op_kernel.cc:1158] Resource exhausted: OOM when allocating tensor with shape[3840,155229]
2017-09-06 12:14:45.788735: W tensorflow/core/framework/op_kernel.cc:1158] Resource exhausted: OOM when allocating tensor with shape[3840,155229]
[[Node: decoder/previous_decoder/Add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](decoder/previous_decoder/MatMul, decoder/biases/read)]]
2017-09-06 12:14:45.790453: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 2857 get requests, put_count=2078 evicted_count=1000 eviction_rate=0.481232 and unsatisfied allocation rate=0.657683
2017-09-06 12:14:45.790482: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:259] Raising pool_size_limit_ from 100 to 110
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1139, in _do_call
return fn(*args)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1121, in _run_fn
status, run_metadata)
File "/usr/lib/python3.6/contextlib.py", line 88, in __exit__
next(self.gen)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[3840,155229]
[[Node: decoder/previous_decoder/Add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](decoder/previous_decoder/MatMul, decoder/biases/read)]]
[[Node: GradientDescent/update/_146 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_2166_GradientDescent/update", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
During handling of the above exception, another exception occurred:
Любая помощь будет оценена. Заранее спасибо.