Pandas: to_numeric для нескольких столбцов

Я работаю со следующим DF:

c.sort_values('2005', ascending=False).head(3)
      GeoName ComponentName     IndustryId IndustryClassification Description                                2004 2005  2006  2007  2008  2009 2010 2011 2012 2013 2014
37926 Alabama Real GDP by state 9          213                    Support activities for mining              99   98    117   117   115   87   96   95   103  102  (NA)
37951 Alabama Real GDP by state 34         42                     Wholesale trade                            9898 10613 10952 11034 11075 9722 9765 9703 9600 9884 10199
37932 Alabama Real GDP by state 15         327                    Nonmetallic mineral products manufacturing 980  968   940   1084  861   724  714  701  589  641  (NA)

Я хочу, чтобы числовые на все годы:

c['2014'] = pd.to_numeric(c['2014'], errors='coerce')

Есть ли простой способ сделать это, или я должен напечатать их все?

Ответ 1

UPDATE: вам не нужно будет преобразовывать ваши значения впоследствии, вы можете сделать это на лету при чтении CSV:

In [165]: df=pd.read_csv(url, index_col=0, na_values=['(NA)']).fillna(0)

In [166]: df.dtypes
Out[166]:
GeoName                    object
ComponentName              object
IndustryId                  int64
IndustryClassification     object
Description                object
2004                        int64
2005                        int64
2006                        int64
2007                        int64
2008                        int64
2009                        int64
2010                        int64
2011                        int64
2012                        int64
2013                        int64
2014                      float64
dtype: object

Если вам нужно преобразовать несколько столбцов в числовые типы dtypes - используйте следующую технику:

Источник выборки DF:

In [271]: df
Out[271]:
     id    a  b  c  d  e    f
0  id_3  AAA  6  3  5  8    1
1  id_9    3  7  5  7  3  BBB
2  id_7    4  2  3  5  4    2
3  id_0    7  3  5  7  9    4
4  id_0    2  4  6  4  0    2

In [272]: df.dtypes
Out[272]:
id    object
a     object
b      int64
c      int64
d      int64
e      int64
f     object
dtype: object

Преобразование выбранных столбцов в числовые типы данных:

In [273]: cols = df.columns.drop('id')

In [274]: df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')

In [275]: df
Out[275]:
     id    a  b  c  d  e    f
0  id_3  NaN  6  3  5  8  1.0
1  id_9  3.0  7  5  7  3  NaN
2  id_7  4.0  2  3  5  4  2.0
3  id_0  7.0  3  5  7  9  4.0
4  id_0  2.0  4  6  4  0  2.0

In [276]: df.dtypes
Out[276]:
id     object
a     float64
b       int64
c       int64
d       int64
e       int64
f     float64
dtype: object

PS, если вы хотите выбрать столбцы all string (object), используйте следующий простой трюк:

cols = df.columns[df.dtypes.eq('object')]

Ответ 2

другой способ использует apply, один лайнер:

cols = ['col1', 'col2', 'col3']
data[cols] = data[cols].apply(pd.to_numeric, errors='coerce', axis=1)

Ответ 3

Вы можете использовать:

print df.columns[5:]
Index([u'2004', u'2005', u'2006', u'2007', u'2008', u'2009', u'2010', u'2011',
       u'2012', u'2013', u'2014'],
      dtype='object')

for col in  df.columns[5:]:
    df[col] = pd.to_numeric(df[col], errors='coerce')

print df
       GeoName      ComponentName  IndustryId  IndustryClassification  \
37926  Alabama  Real GDP by state           9                     213   
37951  Alabama  Real GDP by state          34                      42   
37932  Alabama  Real GDP by state          15                     327   

                                      Description  2004   2005   2006   2007  \
37926               Support activities for mining    99     98    117    117   
37951                            Wholesale  trade  9898  10613  10952  11034   
37932  Nonmetallic mineral products manufacturing   980    968    940   1084   

        2008  2009  2010  2011  2012  2013     2014  
37926    115    87    96    95   103   102      NaN  
37951  11075  9722  9765  9703  9600  9884  10199.0  
37932    861   724   714   701   589   641      NaN  

Другое решение с filter:

print df.filter(like='20')
       2004   2005   2006   2007   2008  2009  2010  2011  2012  2013   2014
37926    99     98    117    117    115    87    96    95   103   102   (NA)
37951  9898  10613  10952  11034  11075  9722  9765  9703  9600  9884  10199
37932   980    968    940   1084    861   724   714   701   589   641   (NA)

for col in  df.filter(like='20').columns:
    df[col] = pd.to_numeric(df[col], errors='coerce')
print df
       GeoName      ComponentName  IndustryId  IndustryClassification  \
37926  Alabama  Real GDP by state           9                     213   
37951  Alabama  Real GDP by state          34                      42   
37932  Alabama  Real GDP by state          15                     327   

                                      Description  2004   2005   2006   2007  \
37926               Support activities for mining    99     98    117    117   
37951                            Wholesale  trade  9898  10613  10952  11034   
37932  Nonmetallic mineral products manufacturing   980    968    940   1084   

        2008  2009  2010  2011  2012  2013     2014  
37926    115    87    96    95   103   102      NaN  
37951  11075  9722  9765  9703  9600  9884  10199.0  
37932    861   724   714   701   589   641      NaN  

Ответ 4

df[cols] = pd.to_numeric(df[cols].stack(), errors='coerce').unstack()

Ответ 5

Если вы ищете диапазон столбцов, вы можете попробовать следующее:

df.iloc[7:] = df.iloc[7:].astype(float)

Приведенные выше примеры преобразуют тип float, поскольку все столбцы начинаются с 7-го до конца. Конечно, вы можете использовать разные типы или разные диапазоны.

Я думаю, что это полезно, когда у вас есть большой диапазон столбцов для преобразования и много строк. Это не заставляет вас перебирать каждую строку самостоятельно - я считаю, что numpy делает это более эффективно.

Это полезно, только если вы знаете, что все необходимые столбцы содержат только числа - это не изменит "плохие значения" (например, строку) на NaN для вас.