Вычислить расстояние между 2 координатами GPS

Как рассчитать расстояние между двумя координатами GPS (используя широту и долготу)?

Ответ 1

Рассчитайте расстояние между двумя координатами по широте и долготе, включая реализацию Javascript.

Запад и Юг отрицательны. Помните, что минуты и секунды превышают 60, поэтому S31 30 'составляет -31.50 градусов.

Не забудьте перевести градусы в радианы. Многие языки имеют эту функцию. Или это простой расчет: radians = degrees * PI/180.

function degreesToRadians(degrees) {
  return degrees * Math.PI / 180;
}

function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
  var earthRadiusKm = 6371;

  var dLat = degreesToRadians(lat2-lat1);
  var dLon = degreesToRadians(lon2-lon1);

  lat1 = degreesToRadians(lat1);
  lat2 = degreesToRadians(lat2);

  var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
          Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2); 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  return earthRadiusKm * c;
}

Вот несколько примеров использования:

distanceInKmBetweenCoordinates (0,0,0,0)//Расстояние между одинаковыми точками должно быть 0 0 distanceInKmBetweenCoordinates (51.5, 0, 38.8, -77.1)//От Лондона до Арлингтона 5918.185064088764

Ответ 2

Ищите haversine с Google; вот мое решение:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

Ответ 3

С# Версия Haversine

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

Здесь .NET Fiddle этого, так что вы можете проверить его со своим собственным Lat/Longs.

Ответ 4

Это очень легко сделать с типом географии в SQL Server 2008.

SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm

4326 - SRID для модели эллипсоидальной Земли WGS84

Ответ 5

Java-версия алгоритма Хаверсина, основанная на ответе Романа Макарова на эту тему

public class HaversineAlgorithm {

    static final double _eQuatorialEarthRadius = 6378.1370D;
    static final double _d2r = (Math.PI / 180D);

    public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
        return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

}

Ответ 6

Это зависит от того, насколько точно вам это нужно, если вам нужна точная точность, лучше всего взглянуть на алгоритм с использованием эллипсоида, а не сферы, такой как алгоритм Винченти, который точно соответствует миллиметру. http://en.wikipedia.org/wiki/Vincenty%27s_algorithm

Ответ 7

Здесь функция Haversine в Python, которую я использую:

from math import pi,sqrt,sin,cos,atan2

def haversine(pos1, pos2):
    lat1 = float(pos1['lat'])
    long1 = float(pos1['long'])
    lat2 = float(pos2['lat'])
    long2 = float(pos2['long'])

    degree_to_rad = float(pi / 180.0)

    d_lat = (lat2 - lat1) * degree_to_rad
    d_long = (long2 - long1) * degree_to_rad

    a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    km = 6367 * c
    mi = 3956 * c

    return {"km":km, "miles":mi}

Ответ 8

Здесь он находится в С# (lat и long в радианах):

double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
    return radius * Math.Acos(
        Math.Sin(lat1) * Math.Sin(lat2)
        + Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}

Если ваш lat и long находятся в градусах, тогда разделите на 180/PI для преобразования в радианы.

Ответ 9

Версия PHP:

(Удалите все deg2rad(), если ваши координаты уже находятся в радианах.)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;

Ответ 10

Мне нужно было рассчитать много расстояний между точками для моего проекта, поэтому я пошел дальше и попытался оптимизировать код, который я нашел здесь. В среднем в разных браузерах моя новая реализация работает в 2 раза быстрее, чем ответ с наибольшим количеством голосов.

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

Вы можете поиграть с моим jsPerf и посмотреть результаты здесь.

Недавно мне нужно было сделать то же самое в python, поэтому вот реализация Python:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

И ради полноты: Haversine на вики.

Ответ 11

Функция T-SQL, которую я использую для выбора записей по расстоянию для центра

Create Function  [dbo].[DistanceInMiles] 
 (  @fromLatitude float ,
    @fromLongitude float ,
    @toLatitude float, 
    @toLongitude float
  )
   returns float
AS 
BEGIN
declare @distance float

select @distance = cast((3963 * ACOS(round(COS(RADIANS([email protected]))*COS(RADIANS([email protected]))+ 
SIN(RADIANS([email protected]))*SIN(RADIANS([email protected]))*COS(RADIANS(@[email protected])),15)) 
)as float) 
  return  round(@distance,1)
END

Ответ 12

Если вам нужно что-то более точное, тогда посмотрите на это.

Формулы Винценти - это два связанных итерационных метода, используемых в геодезии для вычисления расстояния между двумя точками на поверхности сфероид, разработанный Thaddeus Vincenty (1975a). Они основаны на предположение, что фигура Земли является сплюснутым сфероидом, и следовательно, являются более точными, чем такие методы, как дистанция большого круга которые предполагают сферическую Землю.

Первый (прямой) метод вычисляет местоположение точки, которая является заданное расстояние и азимут (направление) от другой точки. Второй (обратный) метод вычисляет географическое расстояние и азимут между двумя заданными точками. Они широко используются в геодезии потому что они точны с точностью до 0,5 мм (0,020 дюйма) на Земле эллипсоид.

Ответ 13

I. Что касается метода "Breadcrumbs"

  • Радиус Земли различен на разных латах. Это необходимо учитывать в алгоритме Хаверсина.
  • Рассмотрим изменение подшипника, которое превращает прямые в арки (которые длиннее)
  • Внесение изменения скорости во внимание превратит арки в спирали (которые длиннее или короче арки)
  • Изменение высоты повернет плоские спирали к трехмерным спиралям (которые более длинны). Это очень важно для холмистой местности.

Ниже приведена функция в C, которая учитывает # 1 и # 2:

double   calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
       double rLat2, double rLon2, double rHeading2){
  double rDLatRad = 0.0;
  double rDLonRad = 0.0;
  double rLat1Rad = 0.0;
  double rLat2Rad = 0.0;
  double a = 0.0;
  double c = 0.0;
  double rResult = 0.0;
  double rEarthRadius = 0.0;
  double rDHeading = 0.0;
  double rDHeadingRad = 0.0;

  if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
              || (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
              || (rLon2 > 180.0)) {
        return -1;
  };

  rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
  rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
  rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
  rLat2Rad = rLat2 * DEGREE_TO_RADIANS;

  a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
              rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);

  if (a == 0.0) {
        return 0.0;
  }

  c = 2 * atan2(sqrt(a), sqrt(1 - a));
  rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
              / 2.0));
  rResult = rEarthRadius * c;

  // Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns

  if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
              && (rHeading2 < 360.0)) {
        rDHeading = fabs(rHeading1 - rHeading2);
        if (rDHeading > 180.0) {
              rDHeading -= 180.0;
        }
        rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
        if (rDHeading > 5.0) {
              rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
        } else {
              rResult = rResult / cos(rDHeadingRad);
        }
  }
  return rResult;
}

II. Существует более простой способ получения хороших результатов.

Средняя скорость.

Trip_distance = Trip_average_speed * Trip_time

Так как скорость GPS обнаружена эффектом Допплера и не имеет прямого отношения к [Lon, Lat], ее можно, по меньшей мере, рассматривать как вторичную (резервное копирование или коррекцию), если не как метод расчета основного расстояния.

Ответ 14

Если вы используете .NET, не извлекайте колесо. См. System.Device.Location. Поблагодарите fnx в комментариях в другом ответе.

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

Ответ 15

Этот код Lua адаптирован из материала, найденного в Википедии, и в Robert Lipe GPSbabel tool:

local EARTH_RAD = 6378137.0 
  -- earth radius in meters (official geoid datum, not 20,000km / pi)

local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
  -- earth radius in miles

local multipliers = {
  radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
  meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000, 
  degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}

function gcdist(pt1, pt2, units) -- return distance in radians or given units
  --- this formula works best for points close together or antipodal
  --- rounding error strikes when distance is one-quarter Earth circumference
  --- (ref: wikipedia Great-circle distance)
  if not pt1.radians then pt1 = rad(pt1) end
  if not pt2.radians then pt2 = rad(pt2) end
  local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
  local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
  local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
  res = res > 1 and 1 or res < -1 and -1 or res
  res = 2 * asin(res);
  if units then return res * assert(multipliers[units])
  else return res
  end
end

Ответ 16

    private double deg2rad(double deg)
    {
        return (deg * Math.PI / 180.0);
    }

    private double rad2deg(double rad)
    {
        return (rad / Math.PI * 180.0);
    }

    private double GetDistance(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Distance in Kilo Meter
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
        return (dist);
    }

    private double GetDirection(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Direction in Degrees
        double dlat = deg2rad(lat1) - deg2rad(lat2);
        double dlon = deg2rad(lon1) - deg2rad(lon2);
        double y = Math.Sin(dlon) * Math.Cos(lat2);
        double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
        double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
        if (direct < 0)
            direct = direct + 360;
        return (direct);
    }

    private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
        double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
        return (Speed);
    }

    private double GetDuration(DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
        return (TimeDifferenceInSeconds);
    }

Ответ 17

Это версия от "Генри Вилинского", адаптированная для MySQL и километров:

CREATE FUNCTION `CalculateDistanceInKm`(
  fromLatitude float,
  fromLongitude float,
  toLatitude float, 
  toLongitude float
) RETURNS float
BEGIN
  declare distance float;

  select 
    6367 * ACOS(
            round(
              COS(RADIANS(90-fromLatitude)) *
                COS(RADIANS(90-toLatitude)) +
                SIN(RADIANS(90-fromLatitude)) *
                SIN(RADIANS(90-toLatitude)) *
                COS(RADIANS(fromLongitude-toLongitude))
              ,15)
            )
    into distance;

  return  round(distance,3);
END;

Ответ 18

вот реализация Swift из ответа

func degreesToRadians(degrees: Double) -> Double {
    return degrees * Double.pi / 180
}

func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {

    let earthRadiusKm: Double = 6371

    let dLat = degreesToRadians(degrees: lat2 - lat1)
    let dLon = degreesToRadians(degrees: lon2 - lon1)

    let lat1 = degreesToRadians(degrees: lat1)
    let lat2 = degreesToRadians(degrees: lat2)

    let a = sin(dLat/2) * sin(dLat/2) +
    sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
    let c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return earthRadiusKm * c
}

Ответ 19

Думаю, ты хочешь этого по искривлению земли. Ваши две точки и центр земли находятся на плоскости. Центр Земли - это центр круга на этой плоскости, и две точки (примерно) расположены по периметру этого круга. Из этого вы можете рассчитать расстояние, узнав, какой угол от одной точки к другой.

Если точки не совпадают с высотами, или если вам нужно учитывать, что земля не идеальная сфера, она становится немного сложнее.

Ответ 20

Недавно мне пришлось сделать то же самое. Я нашел этот веб-сайт, чтобы быть очень полезным, объясняя сферический триггер с примерами, с которыми легко было следовать.

Ответ 21

вы можете найти реализацию этого (с некоторым хорошим объяснением) в F # на fssnip p >

вот важная часть:


let GreatCircleDistance&lt[&ltMeasure&gt] 'u&gt (R : float&lt'u&gt) (p1 : Location) (p2 : Location) =
    let degToRad (x : float&ltdeg&gt) = System.Math.PI * x / 180.0&ltdeg/rad&gt

    let sq x = x * x
    // take the sin of the half and square the result
    let sinSqHf (a : float&ltrad&gt) = (System.Math.Sin &gt&gt sq) (a / 2.0&ltrad&gt)
    let cos (a : float&ltdeg&gt) = System.Math.Cos (degToRad a / 1.0&ltrad&gt)

    let dLat = (p2.Latitude - p1.Latitude) |&gt degToRad
    let dLon = (p2.Longitude - p1.Longitude) |&gt degToRad

    let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
    let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))

    R * c

Ответ 22

Мне нужно было реализовать это в PowerShell, надеюсь, что он может помочь кому-то другому. Некоторые замечания об этом методе

  • Не раскалывайте ни одну из строк, иначе расчет будет неправильным.
  • Для вычисления в KM удалите * 1000 при расчете $distance
  • Измените $earthsRadius = 3963.19059 и удалите * 1000 при расчете $distance, чтобы вычислить расстояние в милях
  • Я использую Haversine, поскольку другие сообщения указывают, что формулы Vincenty гораздо точнее

    Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2)  
    {  
      $Rad = ([math]::PI / 180);  
    
      $earthsRadius = 6378.1370 # Earth Radius in KM  
      $dLat = ($latitude2 - $latitude1) * $Rad  
      $dLon = ($longitude2 - $longitude1) * $Rad  
      $latitude1 = $latitude1 * $Rad  
      $latitude2 = $latitude2 * $Rad  
    
      $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2)  
      $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a))  
    
      $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres  
    
      Return $distance  
    }
    

Ответ 23

Scala версия

  def deg2rad(deg: Double) = deg * Math.PI / 180.0

  def rad2deg(rad: Double) = rad / Math.PI * 180.0

  def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
    val theta = lon1 - lon2
    val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
      Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
    Math.abs(
      Math.round(
        rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
    )
  }

Ответ 24

я взял лучший ответ и использовал его в программе Scala

import java.lang.Math.{atan2, cos, sin, sqrt}

def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
    val earthRadiusKm = 6371
    val dLat = (lat2 - lat1).toRadians
    val dLon = (lon2 - lon1).toRadians
    val latRad1 = lat1.toRadians
    val latRad2 = lat2.toRadians

    val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
    val c = 2 * atan2(sqrt(a), sqrt(1 - a))
    earthRadiusKm * c
}

я каррировал функцию, чтобы иметь возможность легко создавать функции, которые имеют одно из двух фиксированных местоположений и требуют только пару широта/долгота для получения расстояния.

Ответ 25

//Возможно, ошибка опечатки?
У нас есть неиспользуемый переменный dlon в GetDirection,
Я предполагаю

double y = Math.Sin(dlon) * Math.Cos(lat2);
// cannot use degrees in Cos ?

должен быть

double y = Math.Sin(dlon) * Math.Cos(dlat);

Ответ 26

Вот моя реализация в эликсире

defmodule Geo do
  @earth_radius_km 6371
  @earth_radius_sm 3958.748
  @earth_radius_nm 3440.065
  @feet_per_sm 5280

  @d2r :math.pi / 180

  def deg_to_rad(deg), do: deg * @d2r

  def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
  def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
  def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
  def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
  def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm

  @doc """
  Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
  distance between two coordinates. Result is in radians. This result can be
  multiplied by the sphere radius in any unit to get the distance in that unit.
  For example, multiple the result of this function by the Earth radius in
  kilometres and you get the distance between the two given points in kilometres.
  """
  def haversine({lat1, lon1}, {lat2, lon2}) do
    dlat = deg_to_rad(lat2 - lat1)
    dlon = deg_to_rad(lon2 - lon1)

    radlat1 = deg_to_rad(lat1)
    radlat2 = deg_to_rad(lat2)

    a = :math.pow(:math.sin(dlat / 2), 2) +
        :math.pow(:math.sin(dlon / 2), 2) *
        :math.cos(radlat1) * :math.cos(radlat2)

    2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
  end
end

Ответ 27

Дартс версия

Алгоритм Haversine.

import 'dart:math';

class GeoUtils {

  static double _degreesToRadians(degrees) {
    return degrees * pi / 180;
  }

  static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
    var earthRadiusKm = 6371;

    var dLat = _degreesToRadians(lat2-lat1);
    var dLon = _degreesToRadians(lon2-lon1);

    lat1 = _degreesToRadians(lat1);
    lat2 = _degreesToRadians(lat2);

    var a = sin(dLat/2) * sin(dLat/2) +
        sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
    var c = 2 * atan2(sqrt(a), sqrt(1-a));
    return earthRadiusKm * c;
  }
}