Это относится к более раннему вопросу еще в июне:
Вычисление ожидания для пользовательского распределения в Mathematica
У меня есть смешанное смешанное распределение, определенное с использованием второго пользовательского дистрибутива, следующего вдоль строк, обсуждаемых в @Sasha
в нескольких ответах за последний год.
Код, определяющий распределения, следует:
nDist /: CharacteristicFunction[nDist[a_, b_, m_, s_],
t_] := (a b E^(I m t - (s^2 t^2)/2))/((I a + t) (-I b + t));
nDist /: PDF[nDist[a_, b_, m_, s_], x_] := (1/(2*(a + b)))*a*
b*(E^(a*(m + (a*s^2)/2 - x))* Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
E^(b*(-m + (b*s^2)/2 + x))*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]);
nDist /: CDF[nDist[a_, b_, m_, s_],
x_] := ((1/(2*(a + b)))*((a + b)*E^(a*x)*
Erfc[(m - x)/(Sqrt[2]*s)] -
b*E^(a*m + (a^2*s^2)/2)*Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
a*E^((-b)*m + (b^2*s^2)/2 + a*x + b*x)*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]))/ E^(a*x);
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[CDF[nDist[a, b, m, s], x] == #, {x, m}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[nDist[a, b, m, s], x] == p, {x, m}]] /;
0 < p < 1
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
nDist /: Mean[nDist[a_, b_, m_, s_]] := 1/a - 1/b + m;
nDist /: Variance[nDist[a_, b_, m_, s_]] := 1/a^2 + 1/b^2 + s^2;
nDist /: StandardDeviation[ nDist[a_, b_, m_, s_]] :=
Sqrt[ 1/a^2 + 1/b^2 + s^2];
nDist /: DistributionDomain[nDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
nDist /: DistributionParameterQ[nDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
nDist /: DistributionParameterAssumptions[nDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
nDist /: Random`DistributionVector[nDist[a_, b_, m_, s_], n_, prec_] :=
RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec];
(* Fitting: This uses Mean, central moments 2 and 3 and 4th cumulant \
but it often does not provide a solution *)
nDistParam[data_] := Module[{mn, vv, m3, k4, al, be, m, si},
mn = Mean[data];
vv = CentralMoment[data, 2];
m3 = CentralMoment[data, 3];
k4 = Cumulant[data, 4];
al =
ConditionalExpression[
Root[864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 - 216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
be = ConditionalExpression[
Root[2 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3 + (-2 +
m3 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3) #1^3 &, 1], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
m = mn - 1/al + 1/be;
si =
Sqrt[Abs[-al^-2 - be^-2 + vv ]];(*Ensure positive*)
{al,
be, m, si}];
nDistLL =
Compile[{a, b, m, s, {x, _Real, 1}},
Total[Log[
1/(2 (a +
b)) a b (E^(a (m + (a s^2)/2 - x)) Erfc[(m + a s^2 -
x)/(Sqrt[2] s)] +
E^(b (-m + (b s^2)/2 + x)) Erfc[(-m + b s^2 +
x)/(Sqrt[2] s)])]](*, CompilationTarget->"C",
RuntimeAttributes->{Listable}, Parallelization->True*)];
nlloglike[data_, a_?NumericQ, b_?NumericQ, m_?NumericQ, s_?NumericQ] :=
nDistLL[a, b, m, s, data];
nFit[data_] := Module[{a, b, m, s, a0, b0, m0, s0, res},
(* So far have not found a good way to quickly estimate a and \
b. Starting assumption is that they both = 2,then m0 ~=
Mean and s0 ~=
StandardDeviation it seems to work better if a and b are not the \
same at start. *)
{a0, b0, m0, s0} = nDistParam[data];(*may give Undefined values*)
If[! (VectorQ[{a0, b0, m0, s0}, NumericQ] &&
VectorQ[{a0, b0, s0}, # > 0 &]),
m0 = Mean[data];
s0 = StandardDeviation[data];
a0 = 1;
b0 = 2;];
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
nFit[data_, {a0_, b0_, m0_, s0_}] := Module[{a, b, m, s, res},
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
dDist /: PDF[dDist[a_, b_, m_, s_], x_] :=
PDF[nDist[a, b, m, s], Log[x]]/x;
dDist /: CDF[dDist[a_, b_, m_, s_], x_] :=
CDF[nDist[a, b, m, s], Log[x]];
dDist /: EstimatedDistribution[data_, dDist[a_, b_, m_, s_]] :=
dDist[Sequence @@ nFit[Log[data]]];
dDist /: EstimatedDistribution[data_,
dDist[a_, b_, m_,
s_], {{a_, a0_}, {b_, b0_}, {m_, m0_}, {s_, s0_}}] :=
dDist[Sequence @@ nFit[Log[data], {a0, b0, m0, s0}]];
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[dDist[a, b, m, s], x] == p, {x, s}]] /;
0 < p < 1
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[ CDF[dDist[a, b, m, s], x] == #, {x, s}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
dDist /: DistributionDomain[dDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
dDist /: DistributionParameterQ[dDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
dDist /: DistributionParameterAssumptions[dDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
dDist /: Random`DistributionVector[dDist[a_, b_, m_, s_], n_, prec_] :=
Exp[RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec]];
Это позволяет мне соответствовать параметрам распределения и создавать PDF и CDF. Пример графиков:
Plot[PDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
Plot[CDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
Теперь я определил a function
для вычисления средней остаточной жизни (см. этот вопрос для объяснения).
MeanResidualLife[start_, dist_] :=
NExpectation[X \[Conditioned] X > start, X \[Distributed] dist] -
start
MeanResidualLife[start_, limit_, dist_] :=
NExpectation[X \[Conditioned] start <= X <= limit,
X \[Distributed] dist] - start
Первый из них, который не устанавливает предел, как во втором, занимает много времени для вычисления, но оба они работают.
Теперь мне нужно найти минимум функции MeanResidualLife
для одного и того же распределения (или его изменения) или свести к минимуму.
Я пробовал несколько вариантов:
FindMinimum[MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]], x]
FindMinimum[MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], x]
NMinimize[{MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]],
0 <= x <= 1}, x]
NMinimize[{MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], 0 <= x <= 1}, x]
Кажется, что они работают вечно или сталкиваются с:
Power:: infy: встречается бесконечное выражение 1/0. →
Функция MeanResidualLife
, примененная к более простому, но аналогичному распределению, показывает, что она имеет один минимум:
Plot[PDF[LogNormalDistribution[1.75, 0.65], x], {x, 0, 30},
PlotRange -> All]
Plot[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], {x, 0,
30},
PlotRange -> {{0, 30}, {4.5, 8}}]
Также оба:
FindMinimum[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], x]
FindMinimum[MeanResidualLife[x, 30, LogNormalDistribution[1.75, 0.65]], x]
дайте мне ответы (если с первой связью сообщений) при использовании с LogNormalDistribution
.
Любые мысли о том, как заставить это работать для пользовательского дистрибутива, описанного выше?
Нужно ли добавлять ограничения или параметры?
Нужно ли мне определять что-то еще в определениях пользовательских дистрибутивов?
Возможно, для FindMinimum
или NMinimize
просто нужно работать дольше (я запускаю их почти час безрезультатно). Если это так, мне просто нужен способ ускорить поиск минимума функции? Любые предложения о том, как?
Имеет ли у Mathematica
другой способ сделать это?
Добавлено 9 февраля 5:50 вечера EST:
Любой может скачать презентацию Oleksandr Pavlyk's о создании дистрибутивов в Mathematica с мастерской Wolfram Technology Conference 2011 "Создайте собственное расписание" здесь. Загрузки включают в себя блокнот, 'ExampleOfParametricDistribution.nb'
, который, как представляется, содержит все части, необходимые для создания дистрибутива, который можно использовать, например, в дистрибутивах, поставляемых с Mathematica.
Он может предоставить часть ответа.