Многомерные доверительные интервалы

У меня есть множество кортежей (par1, par2), т.е. точки в двумерном пространстве параметров, полученные из повторения эксперимента несколько раз.

Я ищу возможность вычислить и визуализировать доверительные эллипсы (не уверен, что это правильный термин для этого). Вот пример, который я нашел в Интернете, чтобы показать, что я имею в виду:

enter image description here

источник: blogspot.ch/2011/07/classification-and-discrimination-with.html

Таким образом, в принципе, нужно подогнать многомерное нормальное распределение к двумерной гистограмме точек данных, которые, я думаю. Может кто-нибудь помочь мне с этим?

Ответ 1

Похоже, вы просто хотите получить 2-сигма-эллипс разброса точек?

Если да, рассмотрите что-то вроде этого (Из некоторого кода для статьи здесь: https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py):

import numpy as np

import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse

def plot_point_cov(points, nstd=2, ax=None, **kwargs):
    """
    Plots an `nstd` sigma ellipse based on the mean and covariance of a point
    "cloud" (points, an Nx2 array).

    Parameters
    ----------
        points : An Nx2 array of the data points.
        nstd : The radius of the ellipse in numbers of standard deviations.
            Defaults to 2 standard deviations.
        ax : The axis that the ellipse will be plotted on. Defaults to the 
            current axis.
        Additional keyword arguments are pass on to the ellipse patch.

    Returns
    -------
        A matplotlib ellipse artist
    """
    pos = points.mean(axis=0)
    cov = np.cov(points, rowvar=False)
    return plot_cov_ellipse(cov, pos, nstd, ax, **kwargs)

def plot_cov_ellipse(cov, pos, nstd=2, ax=None, **kwargs):
    """
    Plots an `nstd` sigma error ellipse based on the specified covariance
    matrix (`cov`). Additional keyword arguments are passed on to the 
    ellipse patch artist.

    Parameters
    ----------
        cov : The 2x2 covariance matrix to base the ellipse on
        pos : The location of the center of the ellipse. Expects a 2-element
            sequence of [x0, y0].
        nstd : The radius of the ellipse in numbers of standard deviations.
            Defaults to 2 standard deviations.
        ax : The axis that the ellipse will be plotted on. Defaults to the 
            current axis.
        Additional keyword arguments are pass on to the ellipse patch.

    Returns
    -------
        A matplotlib ellipse artist
    """
    def eigsorted(cov):
        vals, vecs = np.linalg.eigh(cov)
        order = vals.argsort()[::-1]
        return vals[order], vecs[:,order]

    if ax is None:
        ax = plt.gca()

    vals, vecs = eigsorted(cov)
    theta = np.degrees(np.arctan2(*vecs[:,0][::-1]))

    # Width and height are "full" widths, not radius
    width, height = 2 * nstd * np.sqrt(vals)
    ellip = Ellipse(xy=pos, width=width, height=height, angle=theta, **kwargs)

    ax.add_artist(ellip)
    return ellip

if __name__ == '__main__':
    #-- Example usage -----------------------
    # Generate some random, correlated data
    points = np.random.multivariate_normal(
            mean=(1,1), cov=[[0.4, 9],[9, 10]], size=1000
            )
    # Plot the raw points...
    x, y = points.T
    plt.plot(x, y, 'ro')

    # Plot a transparent 3 standard deviation covariance ellipse
    plot_point_cov(points, nstd=3, alpha=0.5, color='green')

    plt.show()

enter image description here

Ответ 2

Я слегка изменил один из приведенных выше примеров, который отображает контуры области ошибки или доверия. Теперь я думаю, что он дает правильные контуры.

Он выдавал неправильные контуры, потому что он применял метод scoreatpercentile к объединенному набору данных (синие + красные точки), когда он должен применяться отдельно к каждому набору данных.

Измененный код можно найти ниже:

import numpy
import scipy
import scipy.stats
import matplotlib.pyplot as plt

# generate two normally distributed 2d arrays
x1=numpy.random.multivariate_normal((100,420),[[120,80],[80,80]],400)
x2=numpy.random.multivariate_normal((140,340),[[90,-70],[-70,80]],400)

# fit a KDE to the data
pdf1=scipy.stats.kde.gaussian_kde(x1.T)
pdf2=scipy.stats.kde.gaussian_kde(x2.T)

# create a grid over which we can evaluate pdf
q,w=numpy.meshgrid(range(50,200,10), range(300,500,10))
r1=pdf1([q.flatten(),w.flatten()])
r2=pdf2([q.flatten(),w.flatten()])

# sample the pdf and find the value at the 95th percentile
s1=scipy.stats.scoreatpercentile(pdf1(pdf1.resample(1000)), 5)
s2=scipy.stats.scoreatpercentile(pdf2(pdf2.resample(1000)), 5)

# reshape back to 2d
r1.shape=(20,15)
r2.shape=(20,15)

# plot the contour at the 95th percentile
plt.contour(range(50,200,10), range(300,500,10), r1, [s1],colors='b')
plt.contour(range(50,200,10), range(300,500,10), r2, [s2],colors='r')

# scatter plot the two normal distributions
plt.scatter(x1[:,0],x1[:,1],alpha=0.3)
plt.scatter(x2[:,0],x2[:,1],c='r',alpha=0.3)

Ответ 3

Обратите внимание на сообщение Как нарисовать эллипс ошибки ковариации.

Здесь реализация python:

import numpy as np
from scipy.stats import norm, chi2

def cov_ellipse(cov, q=None, nsig=None, **kwargs):
    """
    Parameters
    ----------
    cov : (2, 2) array
        Covariance matrix.
    q : float, optional
        Confidence level, should be in (0, 1)
    nsig : int, optional
        Confidence level in unit of standard deviations. 
        E.g. 1 stands for 68.3% and 2 stands for 95.4%.

    Returns
    -------
    width, height, rotation :
         The lengths of two axises and the rotation angle in degree
    for the ellipse.
    """

    if q is not None:
        q = np.asarray(q)
    elif nsig is not None:
        q = 2 * norm.cdf(nsig) - 1
    else:
        raise ValueError('One of `q` and `nsig` should be specified.')
    r2 = chi2.ppf(q, 2)

    val, vec = np.linalg.eigh(cov)
    width, height = 2 * sqrt(val[:, None] * r2)
    rotation = np.degrees(arctan2(*vec[::-1, 0]))

    return width, height, rotation

Значение стандартного отклонения неверно в ответе Джо Кингтона. Обычно мы используем 1, 2 сигма для 68%, 95% доверительных уровней, но 2 сигма-эллипс в его ответе не содержит 95% вероятности общего распределения. Правильный способ заключается в использовании распределения квадратов chi для измерения размера эллипса, как показано в post.

Ответ 4

Я предполагаю, что вы ищете, чтобы вычислить Доверительные области.

Я не знаю, как это сделать, но в качестве отправной точки я бы проверил приложение sherpa для python. По крайней мере, в своем разговоре Scipy 2011 авторы отмечают, что вы можете определить и получить доверительные регионы (возможно, вам понадобится модель для ваших данных).

Смотрите видео и соответствующие слайды Sherpa говорить.

НТН