Ошибка Spark Java: размер превышает Integer.MAX_VALUE

Я пытаюсь использовать искру для какой-то простой задачи машинного обучения. Я использовал pyspark и искру 1.2.0 для решения простой проблемы логистической регрессии. У меня 1,2 миллиона записей для обучения, и я хэшировал особенности записей. Когда я устанавливаю количество хеш-функций как 1024, программа работает нормально, но когда я устанавливаю количество хэшированных функций как 16384, программа выходит из строя несколько раз со следующей ошибкой:

Py4JJavaError: An error occurred while calling o84.trainLogisticRegressionModelWithSGD.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 4.0 failed 4 times, most recent failure: Lost task 1.3 in stage 4.0 (TID 9, workernode0.sparkexperience4a7.d5.internal.cloudapp.net): java.lang.RuntimeException: java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
    at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)
    at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123)
    at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132)
    at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517)
    at org.apache.spark.storage.BlockManager.getBlockData(BlockManager.scala:307)
    at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
    at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
    at org.apache.spark.network.netty.NettyBlockRpcServer.receive(NettyBlockRpcServer.scala:57)
    at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:124)
    at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:97)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:91)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:44)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:163)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:787)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:130)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
    at java.lang.Thread.run(Thread.java:745)

    at org.apache.spark.network.client.TransportResponseHandler.handle(TransportResponseHandler.java:156)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:93)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:44)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:163)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:787)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:130)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
    at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
    at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
    at akka.actor.ActorCell.invoke(ActorCell.scala:487)
    at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
    at akka.dispatch.Mailbox.run(Mailbox.scala:220)
    at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

Эта ошибка возникает, когда я тренирую LogisticRegressionWithSGD после переноса данных в LabeledPoint.

Есть ли у кого-нибудь идеи по этому поводу?

Мой код выглядит следующим образом (для этого я использую IPython Notebook):

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import LogisticRegressionWithSGD
from numpy import array
from sklearn.feature_extraction import FeatureHasher
from pyspark import SparkContext
sf = SparkConf().setAppName("test").set("spark.executor.memory", "50g").set("spark.cores.max", 30)
sc = SparkContext(conf=sf)
training_file = sc.textFile("train_small.txt")
def hash_feature(line):
    values = [0, dict()]
    for index, x in enumerate(line.strip("\n").split('\t')):
        if index == 0:
            values[0] = float(x)
        else:
            values[1][str(index)+"_"+x] = 1
    return values
n_feature = 2**14
hasher = FeatureHasher(n_features=n_feature)
training_file_hashed = training_file.map(lambda line: [hash_feature(line)[0], hasher.transform([hash_feature(line)[1]])])
def build_lable_points(line):
    values = [0.0] * n_feature
    for index, value in zip(line[1].indices, line[1].data):
        values[index] = value
    return LabeledPoint(line[0], values)
parsed_training_data = training_file_hashed.map(lambda line: build_lable_points(line))
model = LogisticRegressionWithSGD.train(parsed_training_data)

Ошибка при выполнении последней строки.

Ответ 1

Ограничение Integer.MAX_INT зависит от размера сохраняемого файла. 1.2M строк - это не большая вещь, я не уверен, что ваша проблема - "пределы искры". Скорее всего, часть вашей работы создает нечто слишком большое, чтобы быть обработанным любым конкретным исполнителем.

Я не кодер Python, но когда вы "испортили функции записей", вы можете взять очень редкий набор записей для образца и создать не разреженный массив. Это будет означать много памяти для 16384 функций. В частности, когда вы делаете zip(line[1].indices, line[1].data). Единственная причина, из-за которой вы не можете избавиться от памяти, - вот что вы, похоже, сконфигурировали (50G).

Еще одна вещь, которая может помочь, - увеличить разбиение. Поэтому, если вы не можете заставить свои строки использовать меньше памяти, по крайней мере, вы можете попробовать иметь меньше строк для любой заданной задачи. Любые созданные временные файлы, вероятно, будут зависеть от этого, так что вы вряд ли ударите ограничения по файлам.


И, абсолютно не связанный с ошибкой, но релевантный для того, что вы пытаетесь сделать:

16384 - действительно большое количество функций, в оптимистическом случае, когда каждый из них является просто логической функцией, у вас есть всего 2 ^ 16384 возможных перестановок, из которых можно извлечь уроки, это огромное количество (попробуйте здесь: https://defuse.ca/big-number-calculator.htm).

ОЧЕНЬ, ОЧЕНЬ, что ни один алгоритм не сможет выучить границу решения только с образцами 1,2M, вам, вероятно, понадобится хотя бы несколько триллионов триллионов примеров, чтобы сделать вмятину в таком пространстве возможностей. У машинного обучения есть свои ограничения, поэтому не удивляйтесь, если вы не получите более точную точность.

Я бы определенно рекомендовал сначала попробовать какое-то уменьшение размерности!

Ответ 2

В какой-то момент он пытается сохранить функции, а 1.2M * 16384 больше Integer.MAX_INT, поэтому вы пытаетесь сохранить больше, чем максимальный размер функций, поддерживаемых Spark.

Вероятно, вы попадаете в пределы Apache Spark.