Python: найти область многоугольника из координат xyz

Я пытаюсь использовать модуль shapely.geometry.Polygon для поиска области полигонов, но он выполняет все вычисления на плоскости xy. Это хорошо для некоторых моих полигонов, но у других также есть размер z, поэтому он не совсем делает то, что я хотел бы.

Есть ли пакет, который либо даст мне площадь планарного многоугольника из координат xyz, либо альтернативно пакет или алгоритм для поворота многоугольника на плоскость xy, чтобы я мог использовать shapely.geometry.Polygon().area?

Полигоны представлены в виде списка кортежей в форме [(x1,y1,z1),(x2,y2,z3),...(xn,yn,zn)].

Ответ 1

Вот вывод формулы для вычисления площади трехмерного планарного многоугольника

Вот код Python, который его реализует:

#determinant of matrix a
def det(a):
    return a[0][0]*a[1][1]*a[2][2] + a[0][1]*a[1][2]*a[2][0] + a[0][2]*a[1][0]*a[2][1] - a[0][2]*a[1][1]*a[2][0] - a[0][1]*a[1][0]*a[2][2] - a[0][0]*a[1][2]*a[2][1]

#unit normal vector of plane defined by points a, b, and c
def unit_normal(a, b, c):
    x = det([[1,a[1],a[2]],
             [1,b[1],b[2]],
             [1,c[1],c[2]]])
    y = det([[a[0],1,a[2]],
             [b[0],1,b[2]],
             [c[0],1,c[2]]])
    z = det([[a[0],a[1],1],
             [b[0],b[1],1],
             [c[0],c[1],1]])
    magnitude = (x**2 + y**2 + z**2)**.5
    return (x/magnitude, y/magnitude, z/magnitude)

#dot product of vectors a and b
def dot(a, b):
    return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]

#cross product of vectors a and b
def cross(a, b):
    x = a[1] * b[2] - a[2] * b[1]
    y = a[2] * b[0] - a[0] * b[2]
    z = a[0] * b[1] - a[1] * b[0]
    return (x, y, z)

#area of polygon poly
def area(poly):
    if len(poly) < 3: # not a plane - no area
        return 0

    total = [0, 0, 0]
    for i in range(len(poly)):
        vi1 = poly[i]
        if i is len(poly)-1:
            vi2 = poly[0]
        else:
            vi2 = poly[i+1]
        prod = cross(vi1, vi2)
        total[0] += prod[0]
        total[1] += prod[1]
        total[2] += prod[2]
    result = dot(total, unit_normal(poly[0], poly[1], poly[2]))
    return abs(result/2)

И чтобы проверить это, вот квадрат размером 10x5, который наклоняется:

>>> poly = [[0, 0, 0], [10, 0, 0], [10, 3, 4], [0, 3, 4]]
>>> poly_translated = [[0+5, 0+5, 0+5], [10+5, 0+5, 0+5], [10+5, 3+5, 4+5], [0+5, 3+5, 4+5]]
>>> area(poly)
50.0
>>> area(poly_translated)
50.0
>>> area([[0,0,0],[1,1,1]])
0

Первоначально проблема заключалась в том, что я упрощен. Ему нужно рассчитать единичный вектор, нормальный к плоскости. Площадь составляет половину точечного произведения этого и общего количества всех кросс-продуктов, а не половину суммы всех величин поперечных продуктов.

Это можно немного очистить (матричные и векторные классы сделают его более приятным, если они у вас есть, или стандартные реализации продукта детерминант/кросс-продукт/точка), но он должен быть концептуально звуковым.

Ответ 2

Это последний код, который я использовал. Он не использует стройный, но реализует теорему Стокса для вычисления площади непосредственно. Он основывается на ответе @Tom Smilack, который показывает, как сделать это без numpy.

import numpy as np

#unit normal vector of plane defined by points a, b, and c
def unit_normal(a, b, c):
    x = np.linalg.det([[1,a[1],a[2]],
         [1,b[1],b[2]],
         [1,c[1],c[2]]])
    y = np.linalg.det([[a[0],1,a[2]],
         [b[0],1,b[2]],
         [c[0],1,c[2]]])
    z = np.linalg.det([[a[0],a[1],1],
         [b[0],b[1],1],
         [c[0],c[1],1]])
    magnitude = (x**2 + y**2 + z**2)**.5
    return (x/magnitude, y/magnitude, z/magnitude)

#area of polygon poly
def poly_area(poly):
    if len(poly) < 3: # not a plane - no area
        return 0
    total = [0, 0, 0]
    N = len(poly)
    for i in range(N):
        vi1 = poly[i]
        vi2 = poly[(i+1) % N]
        prod = np.cross(vi1, vi2)
        total[0] += prod[0]
        total[1] += prod[1]
        total[2] += prod[2]
    result = np.dot(total, unit_normal(poly[0], poly[1], poly[2]))
    return abs(result/2)

Ответ 3

Fyi, вот тот же алгоритм в Mathematica, с ребенком unit test

ClearAll[vertexPairs, testPoly, area3D, planeUnitNormal, pairwise];
pairwise[list_, fn_] := MapThread[fn, {Drop[list, -1], Drop[list, 1]}];
vertexPairs[Polygon[{points___}]] := Append[{points}, First[{points}]];
testPoly = Polygon[{{20, -30, 0}, {40, -30, 0}, {40, -30, 20}, {20, -30, 20}}];
planeUnitNormal[Polygon[{points___}]] :=
  With[{ps = Take[{points}, 3]},
   With[{p0 = First[ps]},
    With[{qs = (# - p0) & /@ Rest[ps]},
     Normalize[Cross @@ qs]]]];
area3D[p : Polygon[{polys___}]] :=
  With[{n = planeUnitNormal[p], vs = vertexPairs[p]},
   With[{areas = (Dot[n, #]) & /@ pairwise[vs, Cross]},
    Plus @@ areas/2]];
area3D[testPoly]

Ответ 4

Площадь двумерного многоугольника может быть рассчитана с использованием Numpy в качестве однострочного...

poly_Area(vertices) = np.sum( [0.5, -0.5] * vertices * np.roll( np.roll(vertices, 1, axis=0), 1, axis=1) )

Ответ 5

То же, что @Tom Smilack, но в javascript

//determinant of matrix a
function det(a) {
  return a[0][0] * a[1][1] * a[2][2] + a[0][1] * a[1][2] * a[2][0] + a[0][2] * a[1][0] * a[2][1] - a[0][2] * a[1][1] * a[2][0] - a[0][1] * a[1][0] * a[2][2] - a[0][0] * a[1][2] * a[2][1];
}
//unit normal vector of plane defined by points a, b, and c
function unit_normal(a, b, c) {
  let x = math.det([
    [1, a[1], a[2]],
    [1, b[1], b[2]],
    [1, c[1], c[2]]
  ]);
  let y = math.det([
    [a[0], 1, a[2]],
    [b[0], 1, b[2]],
    [c[0], 1, c[2]]
  ]);
  let z = math.det([
    [a[0], a[1], 1],
    [b[0], b[1], 1],
    [c[0], c[1], 1]
  ]);
  let magnitude = Math.pow(Math.pow(x, 2) + Math.pow(y, 2) + Math.pow(z, 2), 0.5);
  return [x / magnitude, y / magnitude, z / magnitude];
}
// dot product of vectors a and b
function dot(a, b) {
  return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
// cross product of vectors a and b
function cross(a, b) {
  let x = (a[1] * b[2]) - (a[2] * b[1]);
  let y = (a[2] * b[0]) - (a[0] * b[2]);
  let z = (a[0] * b[1]) - (a[1] * b[0]);
  return [x, y, z];
}

// area of polygon poly
function area(poly) {
  if (poly.length < 3) {
    console.log("not a plane - no area");
    return 0;
  } else {
    let total = [0, 0, 0]
    for (let i = 0; i < poly.length; i++) {
      var vi1 = poly[i];
      if (i === poly.length - 1) {
        var vi2 = poly[0];
      } else {
        var vi2 = poly[i + 1];
      }
      let prod = cross(vi1, vi2);
      total[0] = total[0] + prod[0];
      total[1] = total[1] + prod[1];
      total[2] = total[2] + prod[2];
    }
    let result = dot(total, unit_normal(poly[0], poly[1], poly[2]));

    return Math.abs(result/2);
  }

}