Я ищу tidyverse - решение, которое может подсчитывать уникальные значения TF
внутри групп, id
в данных данных tbl
. Когда изменяется TF
, я хочу считать как вперед, так и назад от этой точки. Этот счет должен быть сохранен в новой переменной PM##
, так что PM##
содержит как плюс, так и минус для каждого уникального сдвига в TF
.
Этот вопрос похож на вопрос, который я ранее задавал, но здесь я специально ищу решение, используя tidyverse
. Uwe предоставил элегантный ответ на вопрос, используя data.table
здесь.
Если этот вопрос нарушает какие-либо политики SO, пожалуйста, дайте мне знать, и я буду рад снова открыть свой первоначальный вопрос или добавить эту проблему.
Чтобы проиллюстрировать мой вопрос с минимальным рабочим примером. У меня есть такие данные,
# install.packages(c("tidyverse"), dependencies = TRUE)
library(tibble)
tbl <- tibble(id = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7),
TF = c(NA, 0, NA, 0, 0, 1, 1, 1, NA, 0, 0, NA, 0, 0,
0, 1, 1, 1, NA, NA, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1))
tbl
#> # A tibble: 30 x 2
#> id TF
#> <dbl> <dbl>
#> 1 0 NA
#> 2 0 0
#> 3 0 NA
#> 4 0 0
#> 5 0 0
#> 6 0 1
#> 7 0 1
#> 8 0 1
#> 9 0 NA
#> 10 0 0
#> # ... with 20 more rows
и это то, что я пытаюсь получить,
dfa <- tibble(id = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7),
TF = c(NA, 0, NA, 0, 0, 1, 1, 1, NA, 0, 0, NA, 0, 0,
0, 1, 1, 1, NA, NA, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1),
PM01 = c(NA, -3, NA, -2, -1, 1, 2, 3, NA, NA, NA, NA, -3, -2, -1,
1, 2, 3, NA, NA, -2, -1, 1, NA, NA, NA, NA, NA, NA, NA),
PM02 = c(NA, NA, NA, NA, NA, -3, -2, -1, NA, 1, 2, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, -1, 1, 2, NA, NA, NA, NA, NA),
PM03 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, -2, -1, 1, NA, NA, NA, NA),
PM04 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1, 1, NA, NA, NA),
PM05 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1, 1, 2, 3)
)
dfa
#> # A tibble: 30 x 7
#> id TF PM01 PM02 PM03 PM04 PM05
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 NA NA NA NA NA NA
#> 2 0 0 -3 NA NA NA NA
#> 3 0 NA NA NA NA NA NA
#> 4 0 0 -2 NA NA NA NA
#> 5 0 0 -1 NA NA NA NA
#> 6 0 1 1 -3 NA NA NA
#> 7 0 1 2 -2 NA NA NA
#> 8 0 1 3 -1 NA NA NA
#> 9 0 NA NA NA NA NA NA
#> 10 0 0 NA 1 NA NA NA
#> # ... with 20 more rows