У меня есть приложение, в котором я читаю и записываю небольшие блоки данных (несколько сотен байтов) сотни миллионов раз. Я хотел бы создать словарь сжатия на основе файла данных примера и использовать этот словарь навсегда, когда я читаю и записываю маленькие блоки. Я склоняюсь к алгоритму сжатия LZW. Страница Wikipedia (http://en.wikipedia.org/wiki/Lempel-Ziv-Welch) содержит псевдокод для сжатия и декомпрессии. Это выглядит довольно просто, чтобы изменить его так, что создание словаря является отдельным блоком кода. Поэтому у меня есть два вопроса:
- Я на правильном пути или есть лучший способ?
- Почему алгоритм LZW добавляет словарь во время этапа декомпрессии? Могу ли я пропустить это или потерял бы эффективность в моем словаре?
Спасибо.
Обновление: Теперь я думаю, что идеальным вариантом будет найти библиотеку, которая позволит мне хранить словарь отдельно от сжатых данных. Есть ли что-нибудь подобное?
Обновление: Я закончил тем, что взял код http://www.enusbaum.com/blog/2009/05/22/example-huffman-compression-routine-in-c и адаптировал его. Я - Крис в комментариях на этой странице. Я отправил по электронной почте свои моды назад этому автору блога, но я еще не слышал назад. Коэффициенты сжатия, которые я вижу с этим кодом, не впечатляют. Возможно, это связано с размером 8-битного дерева.
Обновление: Я преобразовал его в 16 бит и сжатие лучше. Это также намного быстрее, чем исходный код.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
namespace Book.Core
{
public class Huffman16
{
private readonly double log2 = Math.Log(2);
private List<Node> HuffmanTree = new List<Node>();
internal class Node
{
public long Frequency { get; set; }
public byte Uncoded0 { get; set; }
public byte Uncoded1 { get; set; }
public uint Coded { get; set; }
public int CodeLength { get; set; }
public Node Left { get; set; }
public Node Right { get; set; }
public bool IsLeaf
{
get { return Left == null; }
}
public override string ToString()
{
var coded = "00000000" + Convert.ToString(Coded, 2);
return string.Format("Uncoded={0}, Coded={1}, Frequency={2}", (Uncoded1 << 8) | Uncoded0, coded.Substring(coded.Length - CodeLength), Frequency);
}
}
public Huffman16(long[] frequencies)
{
if (frequencies.Length != ushort.MaxValue + 1)
{
throw new ArgumentException("frequencies.Length must equal " + ushort.MaxValue + 1);
}
BuildTree(frequencies);
EncodeTree(HuffmanTree[HuffmanTree.Count - 1], 0, 0);
}
public static long[] GetFrequencies(byte[] sampleData, bool safe)
{
if (sampleData.Length % 2 != 0)
{
throw new ArgumentException("sampleData.Length must be a multiple of 2.");
}
var histogram = new long[ushort.MaxValue + 1];
if (safe)
{
for (int i = 0; i <= ushort.MaxValue; i++)
{
histogram[i] = 1;
}
}
for (int i = 0; i < sampleData.Length; i += 2)
{
histogram[(sampleData[i] << 8) | sampleData[i + 1]] += 1000;
}
return histogram;
}
public byte[] Encode(byte[] plainData)
{
if (plainData.Length % 2 != 0)
{
throw new ArgumentException("plainData.Length must be a multiple of 2.");
}
Int64 iBuffer = 0;
int iBufferCount = 0;
using (MemoryStream msEncodedOutput = new MemoryStream())
{
//Write Final Output Size 1st
msEncodedOutput.Write(BitConverter.GetBytes(plainData.Length), 0, 4);
//Begin Writing Encoded Data Stream
iBuffer = 0;
iBufferCount = 0;
for (int i = 0; i < plainData.Length; i += 2)
{
Node FoundLeaf = HuffmanTree[(plainData[i] << 8) | plainData[i + 1]];
//How many bits are we adding?
iBufferCount += FoundLeaf.CodeLength;
//Shift the buffer
iBuffer = (iBuffer << FoundLeaf.CodeLength) | FoundLeaf.Coded;
//Are there at least 8 bits in the buffer?
while (iBufferCount > 7)
{
//Write to output
int iBufferOutput = (int)(iBuffer >> (iBufferCount - 8));
msEncodedOutput.WriteByte((byte)iBufferOutput);
iBufferCount = iBufferCount - 8;
iBufferOutput <<= iBufferCount;
iBuffer ^= iBufferOutput;
}
}
//Write remaining bits in buffer
if (iBufferCount > 0)
{
iBuffer = iBuffer << (8 - iBufferCount);
msEncodedOutput.WriteByte((byte)iBuffer);
}
return msEncodedOutput.ToArray();
}
}
public byte[] Decode(byte[] bInput)
{
long iInputBuffer = 0;
int iBytesWritten = 0;
//Establish Output Buffer to write unencoded data to
byte[] bDecodedOutput = new byte[BitConverter.ToInt32(bInput, 0)];
var current = HuffmanTree[HuffmanTree.Count - 1];
//Begin Looping through Input and Decoding
iInputBuffer = 0;
for (int i = 4; i < bInput.Length; i++)
{
iInputBuffer = bInput[i];
for (int bit = 0; bit < 8; bit++)
{
if ((iInputBuffer & 128) == 0)
{
current = current.Left;
}
else
{
current = current.Right;
}
if (current.IsLeaf)
{
bDecodedOutput[iBytesWritten++] = current.Uncoded1;
bDecodedOutput[iBytesWritten++] = current.Uncoded0;
if (iBytesWritten == bDecodedOutput.Length)
{
return bDecodedOutput;
}
current = HuffmanTree[HuffmanTree.Count - 1];
}
iInputBuffer <<= 1;
}
}
throw new Exception();
}
private static void EncodeTree(Node node, int depth, uint value)
{
if (node != null)
{
if (node.IsLeaf)
{
node.CodeLength = depth;
node.Coded = value;
}
else
{
depth++;
value <<= 1;
EncodeTree(node.Left, depth, value);
EncodeTree(node.Right, depth, value | 1);
}
}
}
private void BuildTree(long[] frequencies)
{
var tiny = 0.1 / ushort.MaxValue;
var fraction = 0.0;
SortedDictionary<double, Node> trees = new SortedDictionary<double, Node>();
for (int i = 0; i <= ushort.MaxValue; i++)
{
var leaf = new Node()
{
Uncoded1 = (byte)(i >> 8),
Uncoded0 = (byte)(i & 255),
Frequency = frequencies[i]
};
HuffmanTree.Add(leaf);
if (leaf.Frequency > 0)
{
trees.Add(leaf.Frequency + (fraction += tiny), leaf);
}
}
while (trees.Count > 1)
{
var e = trees.GetEnumerator();
e.MoveNext();
var first = e.Current;
e.MoveNext();
var second = e.Current;
//Join smallest two nodes
var NewParent = new Node();
NewParent.Frequency = first.Value.Frequency + second.Value.Frequency;
NewParent.Left = first.Value;
NewParent.Right = second.Value;
HuffmanTree.Add(NewParent);
//Remove the two that just got joined into one
trees.Remove(first.Key);
trees.Remove(second.Key);
trees.Add(NewParent.Frequency + (fraction += tiny), NewParent);
}
}
}
}
Примеры использования:
Чтобы создать словарь из данных образца:
var freqs = Huffman16.GetFrequencies(File.ReadAllBytes(@"D:\nodes"), true);
Чтобы инициализировать кодировщик с данным словарем:
var huff = new Huffman16(freqs);
И для сжатия:
var encoded = huff.Encode(raw);
И декомпрессии:
var raw = huff.Decode(encoded);