Как вычислить число 3D Morton (чередуйте биты 3 ints)

Я ищу быстрый способ вычислить число 3D Morton. У этого сайта есть трюк, основанный на магическом количестве, для его выполнения для двумерных чисел Мортона, но не кажется очевидным, как его расширить до 3D: http://www-graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN

Итак, в основном у меня есть 3 10-битных номера, которые я хочу чередовать в одном 30-битном номере с минимальным количеством операций.

Ответ 1

Вы можете использовать ту же технику. Я предполагаю, что переменные содержат 32-разрядные целые числа с самыми высокими 22 битами, установленными на 0 (что немного более ограничительно, чем необходимо). Для каждой переменной x, содержащей одно из трех 10-битных целых чисел, мы делаем следующее:

x = (x | (x << 16)) & 0x030000FF;
x = (x | (x <<  8)) & 0x0300F00F;
x = (x | (x <<  4)) & 0x030C30C3;
x = (x | (x <<  2)) & 0x09249249;

Затем, при x, y и z три управляемых 10-битных целых числа мы получим результат, взяв:

x | (y << 1) | (z << 2)

Способ, которым работает эта техника, заключается в следующем. Каждая из строк x = ... выше "разбивает" группы бит пополам, так что между битами других целых чисел достаточно места. Например, если мы рассмотрим три 4-битовых целых числа, мы разделим их на биты 1234 на 000012000034, где нули зарезервированы для других целых чисел. На следующем шаге мы разделим 12 и 34 таким же образом, чтобы получить 001002003004. Даже если 10 бит не делают приятного повторного деления в двух группах, вы можете просто рассмотреть его 16 бит, где вы потеряете самые высокие из них в конце.

Как вы можете видеть из первой строки, вам действительно нужно, чтобы для каждого входного целого x он содержал x & 0x03000000 == 0.

Ответ 2

Вот мое решение с помощью python script:

Я принял намек в своем комментарии: Fabian "ryg" Giesen
Прочтите длинный комментарий ниже! Нам нужно следить за тем, какие бит нужно идти, как далеко! Затем на каждом шаге мы выбираем эти биты и перемещаем их и применяем битовую маску (см. Комментарий последних строк), чтобы скрыть их!

Bit Distances: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Bit Distances (binary): ['0', '10', '100', '110', '1000', '1010', '1100', '1110', '10000', '10010']
Shifting bits by 1   for bits idx: []
Shifting bits by 2   for bits idx: [1, 3, 5, 7, 9]
Shifting bits by 4   for bits idx: [2, 3, 6, 7]
Shifting bits by 8   for bits idx: [4, 5, 6, 7]
Shifting bits by 16  for bits idx: [8, 9]
BitPositions: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Shifted bef.:   0000 0000 0000 0000 0000 0011 0000 0000 hex: 0x300
Shifted:        0000 0011 0000 0000 0000 0000 0000 0000 hex: 0x3000000
NonShifted:     0000 0000 0000 0000 0000 0000 1111 1111 hex: 0xff
Bitmask is now: 0000 0011 0000 0000 0000 0000 1111 1111 hex: 0x30000ff

Shifted bef.:   0000 0000 0000 0000 0000 0000 1111 0000 hex: 0xf0
Shifted:        0000 0000 0000 0000 1111 0000 0000 0000 hex: 0xf000
NonShifted:     0000 0011 0000 0000 0000 0000 0000 1111 hex: 0x300000f
Bitmask is now: 0000 0011 0000 0000 1111 0000 0000 1111 hex: 0x300f00f

Shifted bef.:   0000 0000 0000 0000 1100 0000 0000 1100 hex: 0xc00c
Shifted:        0000 0000 0000 1100 0000 0000 1100 0000 hex: 0xc00c0
NonShifted:     0000 0011 0000 0000 0011 0000 0000 0011 hex: 0x3003003
Bitmask is now: 0000 0011 0000 1100 0011 0000 1100 0011 hex: 0x30c30c3

Shifted bef.:   0000 0010 0000 1000 0010 0000 1000 0010 hex: 0x2082082
Shifted:        0000 1000 0010 0000 1000 0010 0000 1000 hex: 0x8208208
NonShifted:     0000 0001 0000 0100 0001 0000 0100 0001 hex: 0x1041041
Bitmask is now: 0000 1001 0010 0100 1001 0010 0100 1001 hex: 0x9249249

x &= 0x3ff
x = (x | x << 16) & 0x30000ff   <<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249

Итак, для 10-битного номера и 2 чередующихся битов (для 32 бит) вам нужно сделать следующее:

x &= 0x3ff
x = (x | x << 16) & 0x30000ff   #<<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249

И для 21-битного числа и 2 чередующихся битов (для 64-битных) вам необходимо сделать следующее:

x &= 0x1fffff
x = (x | x << 32) & 0x1f00000000ffff
x = (x | x << 16) & 0x1f0000ff0000ff
x = (x | x << 8) & 0x100f00f00f00f00f
x = (x | x << 4) & 0x10c30c30c30c30c3
x = (x | x << 2) & 0x1249249249249249

И для 42-битного числа и 2 чередующихся битов (для 128 бит) вам нужно сделать следующее (в случае необходимости:-)):

x &= 0x3ffffffffff
x = (x | x << 64) & 0x3ff0000000000000000ffffffffL
x = (x | x << 32) & 0x3ff00000000ffff00000000ffffL
x = (x | x << 16) & 0x30000ff0000ff0000ff0000ff0000ffL
x = (x | x << 8) & 0x300f00f00f00f00f00f00f00f00f00fL
x = (x | x << 4) & 0x30c30c30c30c30c30c30c30c30c30c3L
x = (x | x << 2) & 0x9249249249249249249249249249249L

Python Script для создания и проверки шаблонов чередования!!!

def prettyBinString(x,d=32,steps=4,sep=".",emptyChar="0"):
    b = bin(x)[2:]
    zeros = d - len(b)


    if zeros <= 0: 
        zeros = 0
        k = steps - (len(b) % steps)
    else:
        k = steps - (d % steps)

    s = ""
    #print("zeros" , zeros)
    #print("k" , k)
    for i in range(zeros): 
        #print("k:",k)
        if(k%steps==0 and i!= 0):
            s+=sep
        s += emptyChar
        k+=1

    for i in range(len(b)):
        if( (k%steps==0 and i!=0 and zeros == 0) or  (k%steps==0 and zeros != 0) ):
            s+=sep
        s += b[i]
        k+=1
    return s    

def binStr(x): return prettyBinString(x,32,4," ","0")


def computeBitMaskPatternAndCode(numberOfBits, numberOfEmptyBits):
    bitDistances=[ i*numberOfEmptyBits for i in range(numberOfBits) ]
    print("Bit Distances: " + str(bitDistances))
    bitDistancesB = [bin(dist)[2:] for dist in  bitDistances]
    print("Bit Distances (binary): " + str(bitDistancesB))
    moveBits=[] #Liste mit allen Bits welche aufsteigend um 2, 4,8,16,32,64,128 stellen geschoben werden müssen

    maxLength = len(max(bitDistancesB, key=len))
    abort = False
    for i in range(maxLength):
        moveBits.append([])
        for idx,bits in enumerate(bitDistancesB):
            if not len(bits) - 1 < i:
                if(bits[len(bits)-i-1] == "1"):
                    moveBits[i].append(idx)

    for i in range(len(moveBits)):
        print("Shifting bits by " + str(2**i) + "\t for bits idx: " + str(moveBits[i]))

    bitPositions = range(numberOfBits);
    print("BitPositions: " + str(bitPositions))
    maskOld = (1 << numberOfBits) -1

    codeString = "x &= " + hex(maskOld) + "\n"
    for idx in xrange(len(moveBits)-1, -1, -1):
        if len(moveBits[idx]):


           shifted = 0
           for bitIdxToMove in moveBits[idx]:
                shifted |= 1<<bitPositions[bitIdxToMove];
                bitPositions[bitIdxToMove] += 2**idx; # keep track where the actual bit stands! might get moved several times

           # Get the non shifted part!     
           nonshifted = ~shifted & maskOld

           print("Shifted bef.:\t" + binStr(shifted) + " hex: " + hex(shifted))
           shifted = shifted << 2**idx
           print("Shifted:\t" + binStr(shifted)+ " hex: " + hex(shifted))

           print("NonShifted:\t" + binStr(nonshifted) + " hex: " + hex(nonshifted))
           maskNew =  shifted | nonshifted
           print("Bitmask is now:\t" + binStr(maskNew) + " hex: " + hex(maskNew) +"\n")
           #print("Code: " + "x = x | x << " +str(2**idx)+ " & " +hex(maskNew))

           codeString += "x = (x | x << " +str(2**idx)+ ") & " +hex(maskNew) + "\n"
           maskOld = maskNew
    return codeString


numberOfBits = 10;
numberOfEmptyBits = 2;
codeString = computeBitMaskPatternAndCode(numberOfBits,numberOfEmptyBits);
print(codeString)

def partitionBy2(x):
    exec(codeString)
    return x

def checkPartition(x):
    print("Check partition for: \t" + binStr(x))
    part = partitionBy2(x);
    print("Partition is : \t\t" + binStr(part))
    #make the pattern manualy
    partC = long(0);
    for bitIdx in range(numberOfBits):
        partC  = partC | (x & (1<<bitIdx)) << numberOfEmptyBits*bitIdx
    print("Partition check is :\t" + binStr(partC))
    if(partC == part):
        return True
    else:
        return False

checkError = False        
for i in range(20):
    x = random.getrandbits(numberOfBits);
    if(checkPartition(x) == False):
        checkError = True
        break
if not checkError:
    print("CHECK PARTITION SUCCESSFUL!!!!!!!!!!!!!!!!...")
else:
    print("checkPartition has ERROR!!!!")

Я также добавлю код декодирования через некоторое время!

Ответ 3

Самая простая, вероятно, таблица поиска, если у вас 4K свободного места:

static uint32_t t [ 1024 ] = { 0, 0x1, 0x8, ... };

uint32_t m ( int a, int b, int c )
{
    return t[a] | ( t[b] << 1 ) | ( t[c] << 2 );
}

Бит-хак использует сдвиги и маски для распространения битов, поэтому каждый раз, когда он сдвигает значение и его, копирует некоторые биты в пустые пространства, затем маскирует комбинации, поэтому остаются только исходные биты.

например:

x = 0xabcd;
  = 0000_0000_0000_0000_1010_1011_1100_1101    

x = (x | (x << S[3])) & B[3]; 

  = ( 0x00abcd00 | 0x0000abcd ) & 0xff00ff 
  = 0x00ab__cd & 0xff00ff 
  = 0x00ab00cd
  = 0000_0000_1010_1011_0000_0000_1100_1101
x = (x | (x << S[2])) & B[2]; 
  = ( 0x0ab00cd0 | 0x00ab00cd) & 0x0f0f0f0f 
  =   0x0a_b_c_d & 0x0f0f0f0f 
  = 0x0a0b0c0d 
  = 0000_1010_0000_1011_0000_1100_0000_1101
x = (x | (x << S[1])) & B[1]; 
  = ( 0000_1010_0000_1011_0000_1100_0000_1101 | 
      0010_1000_0010_1100_0011_0000_0011_0100 ) &
      0011_0011_0011_0011_0011_0011_0011_0011
  =   0010_0010_0010_0011_0011_0000_0011_0001
x = (x | (x << S[0])) & B[0]; 
  = ( 0010_0010_0010_0011_0011_0000_0011_0001 | 
      0100_0100_0100_0110_0110_0000_0110_0010 ) &
      0101_0101_0101_0101_0101_0101_0101_0101
  =   0100_0010_0100_0101_0101_0000_0101_0001

В каждой итерации каждый блок разбивается на два, самый правый бит самой левой половины блока перемещается в конечную позицию, а маска применяется, так что остаются только требуемые бит.

Как только вы отделите входы, сдвинув их так, чтобы значения одного падают в нули другого, легко.

Чтобы расширить этот метод для более чем двух бит между значениями в конечном результате, вам нужно увеличить сдвиги между тем, где заканчиваются бит. Это становится немного сложнее, так как размер начального блока не равен 2, поэтому вы можете либо разбить его по середине, либо на степень 2 границы.

Итак, такая эволюция может работать:

0000_0000_0000_0000_0000_0011_1111_1111    
0000_0011_0000_0000_0000_0000_1111_1111    
0000_0011_0000_0000_1111_0000_0000_1111    
0000_0011_0000_1100_0011_0000_1100_0011    
0000_1001_0010_0100_1001_0010_0100_1001    

// 0000_0000_0000_0000_0000_0011_1111_1111    
x = ( x | ( x << 16 ) ) & 0x030000ff;
// 0000_0011_0000_0000_0000_0000_1111_1111    
x = ( x | ( x << 8 ) ) & 0x0300f00f;
// 0000_0011_0000_0000_1111_0000_0000_1111    
x = ( x | ( x << 4 ) ) & 0x030c30c3;
// 0000_0011_0000_1100_0011_0000_1100_0011    
x = ( x | ( x << 2 ) ) & 0x09249249;
// 0000_1001_0010_0100_1001_0010_0100_1001    

Выполните одно и то же преобразование на входах, сдвигайте один за другим, а затем два, или вместе, и все готово.

Ответ 4

Хорошее время, я просто сделал это в прошлом месяце!

Ключ должен был сделать две функции. Один разбрасывает биты на каждый третий бит. Затем мы можем объединить три из них (со сдвигом для последних двух), чтобы получить окончательное значение чередования Мортона.

Этот код перемежается, начиная с HIGH-бит (что более логично для значений фиксированной точки). Если ваше приложение составляет всего 10 бит на компонент, просто сдвиньте каждое значение, оставшееся до 22, чтобы начать его с высоких бит.

/* Takes a value and "spreads" the HIGH bits to lower slots to seperate them.
   ie, bit 31 stays at bit 31, bit 30 goes to bit 28, bit 29 goes to bit 25, etc.
   Anything below bit 21 just disappears. Useful for interleaving values
   for Morton codes. */
inline unsigned long spread3(unsigned long x)
{
  x=(0xF0000000&x) | ((0x0F000000&x)>>8) | (x>>16); // spread top 3 nibbles
  x=(0xC00C00C0&x) | ((0x30030030&x)>>4);
  x=(0x82082082&x) | ((0x41041041&x)>>2);
  return x;
}

inline unsigned long morton(unsigned long x, unsigned long y, unsigned long z)
{
  return spread3(x) | (spread3(y)>>1) | (spread3(z)>>2);
}

Ответ 5

В следующем коде найден число Morton из трех 10-битных входных номеров. Он использует идеал из вашей ссылки и выполняет разброс бит в шагах 5-5, 3-2-3-2, 2-1-1-1-2-1-1-1 и 1-1-1- 1-1-1-1-1-1-1, потому что 10 не является степенью двух.

......................9876543210
............98765..........43210
........987....56......432....10
......98..7..5..6....43..2..1..0
....9..8..7..5..6..4..3..2..1..0

Вы можете видеть местоположение каждого бита перед первым и после каждого из четырех шагов.

public static Int32 GetMortonNumber(Int32 x, Int32 y, Int32 z)
{
    return SpreadBits(x, 0) | SpreadBits(y, 1) | SpreadBits(z, 2);
}

public static Int32 SpreadBits(Int32 x, Int32 offset)
{
    if ((x < 0) || (x > 1023))
    {
        throw new ArgumentOutOfRangeException();
    }

    if ((offset < 0) || (offset > 2))
    {
        throw new ArgumentOutOfRangeException();
    }

    x = (x | (x << 10)) & 0x000F801F;
    x = (x | (x <<  4)) & 0x00E181C3;
    x = (x | (x <<  2)) & 0x03248649;
    x = (x | (x <<  2)) & 0x09249249;

    return x << offset;
}

Ответ 6

Я взял вышеизложенное и изменил его, чтобы объединить 3 16-битных номера в 48- (действительно 64-) бит. Возможно, это спасет кого-то маленькое мышление, чтобы добраться туда.

#include <inttypes.h>
#include <assert.h>
uint64_t zorder3d(uint64_t x, uint64_t y, uint64_t z){
     static const uint64_t B[] = {0x00000000FF0000FF, 0x000000F00F00F00F,
                                    0x00000C30C30C30C3, 0X0000249249249249};           
     static const int S[] =  {16, 8, 4, 2}; 
     static const uint64_t MAXINPUT = 65536;

     assert( ( (x < MAXINPUT) ) && 
      ( (y < MAXINPUT) ) && 
      ( (z < MAXINPUT) )
     );

     x = (x | (x << S[0])) & B[0];
     x = (x | (x << S[1])) & B[1];
     x = (x | (x << S[2])) & B[2];
     x = (x | (x << S[3])) & B[3];

     y = (y | (y << S[0])) & B[0];
     y = (y | (y << S[1])) & B[1];
     y = (y | (y << S[2])) & B[2];
     y = (y | (y << S[3])) & B[3];

     z = (z | (z <<  S[0])) & B[0];
     z = (z | (z <<  S[1])) & B[1];
     z = (z | (z <<  S[2])) & B[2];
     z = (z | (z <<  S[3])) & B[3];

     return ( x | (y << 1) | (z << 2) );
    }

Ответ 7

Ниже приведен фрагмент кода для генерации ключа Morton размером 64 бит для трехмерной точки.

using namespace std;

unsigned long long spreadBits(unsigned long long x)
{
    x=(x|(x<<20))&0x000001FFC00003FF;
    x=(x|(x<<10))&0x0007E007C00F801F;
    x=(x|(x<<4))&0x00786070C0E181C3;
    x=(x|(x<<2))&0x0199219243248649;
    x=(x|(x<<2))&0x0649249249249249;
    x=(x|(x<<2))&0x1249249249249249;
    return x;
}

int main()
{
    unsigned long long x,y,z,con=1;
    con=con<<63;
    printf("%#llx\n",(spreadBits(x)|(spreadBits(y)<<1)|(spreadBits(z)<<2))|con);    
}

Ответ 8

У меня была аналогичная проблема сегодня, но вместо 3 чисел мне нужно совместить произвольное количество чисел любой длины бит. Я использовал свой собственный алгоритм распространения и маскирования бит и применил его к С# BigIntegers. Вот код, который я написал. В качестве этапа компиляции он вычисляет магические числа и маску для заданного числа измерений и глубины бита. Затем вы можете повторно использовать объект для нескольких преобразований.

/// <summary>
/// Convert an array of integers into a Morton code by interleaving the bits.
/// Create one Morton object for a given pair of Dimension and BitDepth and reuse if when encoding multiple 
/// Morton numbers.
/// </summary>  
public class Morton
{
    /// <summary>
    /// Number of bits to use to represent each number being interleaved.
    /// </summary>
    public int BitDepth { get; private set; }

    /// <summary>
    /// Count of separate numbers to interleave into a Morton number.
    /// </summary>
    public int Dimensions { get; private set; }

    /// <summary>
    /// The MagicNumbers spread the bits out to the right position.
    /// Each must must be applied and masked, because the bits would overlap if we only used one magic number.
    /// </summary>
    public BigInteger LargeMagicNumber { get; private set; }
    public BigInteger SmallMagicNumber { get; private set; }

    /// <summary>
    /// The mask removes extraneous bits that were spread into positions needed by the other dimensions.
    /// </summary>
    public BigInteger Mask { get; private set; }

    public Morton(int dimensions, int bitDepth)
    {
        BitDepth = bitDepth;
        Dimensions = dimensions;
        BigInteger magicNumberUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        LargeMagicNumber = magicNumberUnit;
        BigInteger maskUnit = new BigInteger(1UL << (int)(Dimensions - 1));
        Mask = maskUnit;
        for (var i = 0; i < bitDepth - 1; i++)
        {
            LargeMagicNumber = (LargeMagicNumber << (Dimensions - 1)) | (i % 2 == 1 ? magicNumberUnit : BigInteger.Zero);
            Mask = (Mask << Dimensions) | maskUnit;       
        }
        SmallMagicNumber = (LargeMagicNumber >> BitDepth) << 1; // Need to trim off pesky ones place bit.
    }

    /// <summary>
    /// Interleave the bits from several integers into a single BigInteger.
    /// The high-order bit from the first number becomes the high-order bit of the Morton number.
    /// The high-order bit of the second number becomes the second highest-ordered bit in the Morton number.
    /// 
    /// How it works.
    /// 
    /// When you multupliy by the magic numbers you make multiple copies of the the number they are multplying, 
    /// each shifted by a different amount.
    /// As it turns out, the high order bit of the highest order copy of a number is N bits to the left of the 
    /// second bit of the second copy, and so forth. 
    /// This is because each copy is shifted one bit less than N times the copy number.
    /// After that, you apply the AND-mask to unset all bits that are not in position.
    /// 
    /// Two magic numbers are needed because since each copy is shifted one less than the bitDepth, consecutive
    /// copies would overlap and ruin the algorithm. Thus one magic number (LargeMagicNumber) handles copies 1, 3, 5, etc, while the 
    /// second (SmallMagicNumber) handles copies 2, 4, 6, etc.
    /// </summary>
    /// <param name="vector">Integers to combine.</param>
    /// <returns>A Morton number composed of Dimensions * BitDepth bits.</returns>
    public BigInteger Interleave(int[] vector)
    {
        if (vector == null || vector.Length != Dimensions)
            throw new ArgumentException("Interleave expects an array of length " + Dimensions, "vector");
        var morton = BigInteger.Zero;
        for (var i = 0; i < Dimensions; i++)
        {
            morton |= (((LargeMagicNumber * vector[i]) & Mask) | ((SmallMagicNumber * vector[i]) & Mask)) >> i;
        }
        return morton;
    }


    public override string ToString()
    {
        return "Morton(Dimension: " + Dimensions + ", BitDepth: " + BitDepth 
            + ", MagicNumbers: " + Convert.ToString((long)LargeMagicNumber, 2) + ", " + Convert.ToString((long)SmallMagicNumber, 2)
            + ", Mask: " + Convert.ToString((long)Mask, 2) + ")";
    }
}

Ответ 9

Здесь генератор, который я сделал в Ruby для создания методов кодирования произвольной длины:

def morton_code_for(bits)
  method = ''

  limit_mask = (1 << (bits * 3)) - 1
  split = (2 ** ((Math.log(bits) / Math.log(2)).to_i + 1)).to_i
  level = 1

  puts "// Coding for 3 #{bits}-bit values"

  loop do
    shift = split
    split /= 2
    level *= 2

    mask = ([ '1' * split ] * level).join('0' * split * 2).to_i(2) & limit_mask

    expression = "v = (v | (v << %2d)) & 0x%016x;" % [ shift, mask ]

    method << expression

    puts "%s // 0b%064b" % [ expression, mask ]

    break if (split <= 1)
  end

  puts
  print "// Test of method results: "
  v = (1 << bits) - 1
  puts eval(method).to_s(2)
end

morton_code_for(21)

Выход подходит для общего назначения и может быть адаптирован по мере необходимости. Пример вывода:

// Coding for 3 21-bit values
v = (v | (v << 32)) & 0x7fff00000000ffff; // 0b0111111111111111000000000000000000000000000000001111111111111111
v = (v | (v << 16)) & 0x00ff0000ff0000ff; // 0b0000000011111111000000000000000011111111000000000000000011111111
v = (v | (v <<  8)) & 0x700f00f00f00f00f; // 0b0111000000001111000000001111000000001111000000001111000000001111
v = (v | (v <<  4)) & 0x30c30c30c30c30c3; // 0b0011000011000011000011000011000011000011000011000011000011000011
v = (v | (v <<  2)) & 0x1249249249249249; // 0b0001001001001001001001001001001001001001001001001001001001001001

// Test of method results: 1001001001001001001001001001001001001001001001001001001001001