Я тестирую многомерное масштабирование с помощью sklearn, pandas и numpy. В файле данных Im используется 10 числовых столбцов и отсутствуют пропущенные значения. Я пытаюсь взять эти десятимерные данные и визуализировать их в двух измерениях с помощью многомерного масштабирования sklearn.manifold следующим образом:
import numpy as np
import pandas as pd
from sklearn import manifold
from sklearn.metrics import euclidean_distances
seed = np.random.RandomState(seed=3)
data = pd.read_csv('data/big-file.csv')
# start small dont take all the data,
# its about 200k records
subset = data[:10000]
similarities = euclidean_distances(subset)
mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9,
random_state=seed, dissimilarity="precomputed", n_jobs=1)
pos = mds.fit(similarities).embedding_
Но я получаю эту ошибку значения:
Traceback (most recent call last):
File "demo/mds-demo.py", line 18, in <module>
pos = mds.fit(similarities).embedding_
File "/Users/dwilliams/Desktop/Anaconda/lib/python2.7/site-packages/sklearn/manifold/mds.py", line 360, in fit
self.fit_transform(X, init=init)
File "/Users/dwilliams/Desktop/Anaconda/lib/python2.7/site-packages/sklearn/manifold/mds.py", line 395, in fit_transform
eps=self.eps, random_state=self.random_state)
File "/Users/dwilliams/Desktop/Anaconda/lib/python2.7/site-packages/sklearn/manifold/mds.py", line 242, in smacof
eps=eps, random_state=random_state)
File "/Users/dwilliams/Desktop/Anaconda/lib/python2.7/site-packages/sklearn/manifold/mds.py", line 73, in _smacof_single
raise ValueError("similarities must be symmetric")
ValueError: similarities must be symmetric
Я думал, что евклидовые_значения вернули симметричную матрицу. Что я делаю неправильно и как это исправить?