Как получить гауссовский фильтр в python

Я использую python для создания гауссовского фильтра размером 5x5. Я видел этот пост здесь, где они говорят о подобной вещи, но я не нашел точного способа получить эквивалентный код python для функции matlab fspecial('gaussian', f_wid, sigma) Есть ли другой способ сделать это? Я попытался использовать следующий код:

size = 2
sizey = None
size = int(size)
if not sizey:
    sizey = size
else:
    sizey = int(sizey)
x, y = scipy.mgrid[-size: size + 1, -sizey: sizey + 1]
g = scipy.exp(- (x ** 2/float(size) + y ** 2 / float(sizey)))
print g / np.sqrt(2 * np.pi)

Полученный результат

[[ 0.00730688  0.03274718  0.05399097  0.03274718  0.00730688]
 [ 0.03274718  0.14676266  0.24197072  0.14676266  0.03274718]
 [ 0.05399097  0.24197072  0.39894228  0.24197072  0.05399097]
 [ 0.03274718  0.14676266  0.24197072  0.14676266  0.03274718]
 [ 0.00730688  0.03274718  0.05399097  0.03274718  0.00730688]]

Я хочу что-то вроде этого:

   0.0029690   0.0133062   0.0219382   0.0133062   0.0029690
   0.0133062   0.0596343   0.0983203   0.0596343   0.0133062
   0.0219382   0.0983203   0.1621028   0.0983203   0.0219382
   0.0133062   0.0596343   0.0983203   0.0596343   0.0133062
   0.0029690   0.0133062   0.0219382   0.0133062   0.0029690

Ответ 1

В общих чертах, если вы действительно заботитесь о том, чтобы получить тот же результат, что и MATLAB, самый простой способ добиться этого - это часто смотреть прямо на источник функции MATLAB.

В этом случае edit fspecial:

...
  case 'gaussian' % Gaussian filter

     siz   = (p2-1)/2;
     std   = p3;

     [x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
     arg   = -(x.*x + y.*y)/(2*std*std);

     h     = exp(arg);
     h(h<eps*max(h(:))) = 0;

     sumh = sum(h(:));
     if sumh ~= 0,
       h  = h/sumh;
     end;
...

Довольно просто, а? Он < 10mins работает, чтобы перенести это на Python:

import numpy as np

def matlab_style_gauss2D(shape=(3,3),sigma=0.5):
    """
    2D gaussian mask - should give the same result as MATLAB's
    fspecial('gaussian',[shape],[sigma])
    """
    m,n = [(ss-1.)/2. for ss in shape]
    y,x = np.ogrid[-m:m+1,-n:n+1]
    h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
    h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
    sumh = h.sum()
    if sumh != 0:
        h /= sumh
    return h

Это дает мне тот же ответ, что и fspecial, с ошибкой округления:

 >> fspecial('gaussian',5,1)

 0.002969     0.013306     0.021938     0.013306     0.002969
 0.013306     0.059634      0.09832     0.059634     0.013306
 0.021938      0.09832       0.1621      0.09832     0.021938
 0.013306     0.059634      0.09832     0.059634     0.013306
 0.002969     0.013306     0.021938     0.013306     0.002969

 : matlab_style_gauss2D((5,5),1)

array([[ 0.002969,  0.013306,  0.021938,  0.013306,  0.002969],
       [ 0.013306,  0.059634,  0.09832 ,  0.059634,  0.013306],
       [ 0.021938,  0.09832 ,  0.162103,  0.09832 ,  0.021938],
       [ 0.013306,  0.059634,  0.09832 ,  0.059634,  0.013306],
       [ 0.002969,  0.013306,  0.021938,  0.013306,  0.002969]])

Ответ 2

Эта функция реализует функциональные возможности, подобные fspecial в matlab

http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html от скудного импортного сигнала

>>>signal.get_window(('gaussian',2),3)
>>>array([ 0.8824969,  1.       ,  0.8824969])

Эта функция генерирует только 1D ядер

Я предполагаю, что вы могли бы реализовать код для генерации гауссовской маски, как и другие, указали.

Ответ 3

Вы также можете попробовать это (как произведение 2 независимых 1D гауссовских случайных величин) для получения двумерного гауссовского ядра:

from numpy import pi, exp, sqrt
s, k = 1, 2 #  generate a (2k+1)x(2k+1) gaussian kernel with mean=0 and sigma = s
probs = [exp(-z*z/(2*s*s))/sqrt(2*pi*s*s) for z in range(-k,k+1)] 
kernel = np.outer(probs, probs)
print kernel

#[[ 0.00291502  0.00792386  0.02153928  0.00792386  0.00291502]
#[ 0.00792386  0.02153928  0.05854983  0.02153928  0.00792386]
#[ 0.02153928  0.05854983  0.15915494  0.05854983  0.02153928]
#[ 0.00792386  0.02153928  0.05854983  0.02153928  0.00792386]
#[ 0.00291502  0.00792386  0.02153928  0.00792386  0.00291502]]

import matplotlib.pylab as plt
plt.imshow(kernel)
plt.colorbar()
plt.show()

введите описание изображения здесь

Ответ 4

Привет. Я думаю, проблема в том, что для гауссовского фильтра коэффициент нормировки зависит от того, сколько измерений вы использовали. Таким образом, фильтр выглядит следующим образом: formula
То, что вы пропустили, является квадратом коэффициента нормировки! И нужно перенормировать всю матрицу из-за вычислительной точности! Код прилагается здесь:

def gaussian_filter(shape =(5,5), sigma=1):
    x, y = [edge /2 for edge in shape]
    grid = np.array([[((i**2+j**2)/(2.0*sigma**2)) for i in xrange(-x, x+1)] for j in xrange(-y, y+1)])
    g_filter = np.exp(-grid)/(2*np.pi*sigma**2)
    g_filter /= np.sum(g_filter)
    return g_filter
print gaussian_filter()

Выход без нормализации к сумме 1:

[[ 0.00291502  0.01306423  0.02153928  0.01306423  0.00291502]
 [ 0.01306423  0.05854983  0.09653235  0.05854983  0.01306423]
 [ 0.02153928  0.09653235  0.15915494  0.09653235  0.02153928]
 [ 0.01306423  0.05854983  0.09653235  0.05854983  0.01306423]
 [ 0.00291502  0.01306423  0.02153928  0.01306423  0.00291502]]

Выход делится на np.sum(g_filter):

[[ 0.00296902  0.01330621  0.02193823  0.01330621  0.00296902]
 [ 0.01330621  0.0596343   0.09832033  0.0596343   0.01330621]
 [ 0.02193823  0.09832033  0.16210282  0.09832033  0.02193823]
 [ 0.01330621  0.0596343   0.09832033  0.0596343   0.01330621]
 [ 0.00296902  0.01330621  0.02193823  0.01330621  0.00296902]]

Ответ 5

здесь должен быть создан nd-гауссовый генератор окна:

def gen_gaussian_kernel(shape, mean, var):
    coors = [range(shape[d]) for d in range(len(shape))]
    k = np.zeros(shape=shape)
    cartesian_product = [[]]
    for coor in coors:
        cartesian_product = [x + [y] for x in cartesian_product for y in coor]
    for c in cartesian_product:
        s = 0
        for cc, m in zip(c,mean):
            s += (cc - m)**2
        k[tuple(c)] = exp(-s/(2*var))
    return k

эта функция даст вам ненормализованные гауссовые окна с заданной формой, центром и дисперсией. например:    gen_gaussian_kernel (shape = (3,3,3), mean = (1,1,1), var = 1.0) output →

[[[ 0.22313016  0.36787944  0.22313016]
  [ 0.36787944  0.60653066  0.36787944]
  [ 0.22313016  0.36787944  0.22313016]]

 [[ 0.36787944  0.60653066  0.36787944]
  [ 0.60653066  1.          0.60653066]
  [ 0.36787944  0.60653066  0.36787944]]

 [[ 0.22313016  0.36787944  0.22313016]
  [ 0.36787944  0.60653066  0.36787944]
  [ 0.22313016  0.36787944  0.22313016]]]

Ответ 6

Я нашел аналогичное решение для этой проблемы:

def fspecial_gauss(size, sigma):

    """Function to mimic the 'fspecial' gaussian MATLAB function
    """

    x, y = numpy.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
    g = numpy.exp(-((x**2 + y**2)/(2.0*sigma**2)))
    return g/g.sum()