При чтении огромного файла HDF5 с "pandas.read_hdf()", почему я все еще получаю MemoryError, хотя я читаю фрагменты, указав chunksize?

Описание проблемы:

Я использую python pandas, чтобы прочитать несколько больших файлов CSV и сохранить их в файле HDF5, в результате получившийся файл HDF5 составляет около 10 ГБ. Проблема возникает при чтении. Несмотря на то, что я пытался прочитать его в кусках, я все равно получаю MemoryError.

Вот как я создаю файл HDF5:

import glob, os
import pandas as pd

hdf = pd.HDFStore('raw_sample_storage2.h5')

os.chdir("C:/RawDataCollection/raw_samples/PLB_Gate")
for filename in glob.glob("RD_*.txt"):
    raw_df = pd.read_csv(filename,
                         sep=' ',
                         header=None, 
                         names=['time', 'GW_time', 'node_id', 'X', 'Y', 'Z', 'status', 'seq', 'rssi', 'lqi'], 
                         dtype={'GW_time': uint32, 'node_id': uint8, 'X': uint16, 'Y': uint16, 'Z':uint16, 'status': uint8, 'seq': uint8, 'rssi': int8, 'lqi': uint8},
                         parse_dates=['time'], 
                         date_parser=dateparse, 
                         chunksize=50000, 
                         skip_blank_lines=True)
    for chunk in raw_df:
        hdf.append('raw_sample_all', chunk, format='table', data_columns = True, index = True, compression='blosc', complevel=9)

Вот как я пытаюсь прочитать его в кусках:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
    print(df.head(1))

Вот сообщение об ошибке, которое я получил:

---------------------------------------------------------------------------
MemoryError                               Traceback (most recent call last)
<ipython-input-7-ef278566a16b> in <module>()
----> 1 for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
      2     print(df.head(1))

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_hdf(path_or_buf, key, **kwargs)
    321         store = HDFStore(path_or_buf, **kwargs)
    322         try:
--> 323             return f(store, True)
    324         except:
    325 

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in <lambda>(store, auto_close)
    303 
    304     f = lambda store, auto_close: store.select(
--> 305         key, auto_close=auto_close, **kwargs)
    306 
    307     if isinstance(path_or_buf, string_types):

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select(self, key, where, start, stop, columns, iterator, chunksize, auto_close, **kwargs)
    663                            auto_close=auto_close)
    664 
--> 665         return it.get_result()
    666 
    667     def select_as_coordinates(

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in get_result(self, coordinates)
   1346                     "can only use an iterator or chunksize on a table")
   1347 
-> 1348             self.coordinates = self.s.read_coordinates(where=self.where)
   1349 
   1350             return self

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_coordinates(self, where, start, stop, **kwargs)
   3545         self.selection = Selection(
   3546             self, where=where, start=start, stop=stop, **kwargs)
-> 3547         coords = self.selection.select_coords()
   3548         if self.selection.filter is not None:
   3549             for field, op, filt in self.selection.filter.format():

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select_coords(self)
   4507             return self.coordinates
   4508 
-> 4509         return np.arange(start, stop)
   4510 
   4511 # utilities ###

MemoryError: 

Моя среда python:

INSTALLED VERSIONS
------------------
commit: None
python: 2.7.3.final.0
python-bits: 32
OS: Windows
OS-release: 7
machine: x86
processor: x86 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None

pandas: 0.15.2
nose: 1.3.4
Cython: 0.22
numpy: 1.9.2
scipy: 0.15.1
statsmodels: 0.6.1
IPython: 3.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.1
pytz: 2015.2
bottleneck: None
tables: 3.1.1
numexpr: 2.3.1
matplotlib: 1.4.3
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.6.7
lxml: 3.4.2
bs4: 4.3.2
html5lib: None
httplib2: None
apiclient: None
rpy2: None
sqlalchemy: 0.9.9
pymysql: None
psycopg2: None

Изменить 1:

Потребовалось около получаса, чтобы MemoryError произошел после выполнения read_hdf(), и тем временем я проверил taskmgr, и небольшая активность процессора и используемая общая память никогда не превышали 2,2 ГБ. было около 2,1 ГБ, прежде чем я запустил код. Таким образом, независимо от того, что загружено в ОЗУ pandas read_hdf(), меньше 100 МБ (у меня 4G RAM, а моя 32-битная Windows-система может использовать только 2.7G, а я использовал остальные для RAM-диска)

Здесь информация о файле hdf:

In [2]:
hdf = pd.HDFStore('raw_sample_storage2.h5')
hdf

Out[2]:
<class 'pandas.io.pytables.HDFStore'>
File path: C:/RawDataCollection/raw_samples/PLB_Gate/raw_sample_storage2.h5
/raw_sample_all            frame_table  (typ->appendable,nrows->308581091,ncols->10,indexers->[index],dc->[time,GW_time,node_id,X,Y,Z,status,seq,rssi,lqi])

Кроме того, я могу прочитать часть файла hdf, указав "start" и "stop" вместо "chunksize":

%%time
df = pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000)
print df.info()
print(df.head(5))

Выполнение занимает всего 4 секунды, а выход:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 300000 entries, 0 to 49999
Data columns (total 10 columns):
time       300000 non-null datetime64[ns]
GW_time    300000 non-null uint32
node_id    300000 non-null uint8
X          300000 non-null uint16
Y          300000 non-null uint16
Z          300000 non-null uint16
status     300000 non-null uint8
seq        300000 non-null uint8
rssi       300000 non-null int8
lqi        300000 non-null uint8
dtypes: datetime64[ns](1), int8(1), uint16(3), uint32(1), uint8(4)
memory usage: 8.9 MB
None
                 time   GW_time  node_id      X      Y      Z  status  seq  \
0 2013-10-22 17:20:58  39821761        3  20010  21716  22668       0   33   
1 2013-10-22 17:20:58  39821824        4  19654  19647  19241       0   33   
2 2013-10-22 17:20:58  39821888        1  16927  21438  22722       0   34   
3 2013-10-22 17:20:58  39821952        2  17420  22882  20440       0   34   
4 2013-10-22 17:20:58  39822017        3  20010  21716  22668       0   34   

   rssi  lqi  
0   -43   49  
1   -72   47  
2   -46   48  
3   -57   46  
4   -42   50  
Wall time: 4.26 s

Отметив, что 300000 строк занимают 8,9 МБ ОЗУ, я попытался использовать chunksize вместе с запуском и остановкой:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000,chunksize = 3000):
    print df.info()
    print(df.head(5))

То же самое происходит с MemoryError.

Я не понимаю, что происходит здесь, если внутренний механизм каким-то образом игнорирует chunksize/start/stop и пытается загрузить все это в ОЗУ, как почти нет увеличения использования RAM (всего 100 МБ), когда MemoryError случается? И почему выполнение занимает полчаса, чтобы достичь ошибки в самом начале процесса без заметного использования ЦП?

Ответ 1

Таким образом, итератор построен главным образом для работы с предложением where. PyTables возвращает список указателей, где предложение равно True. Это номера строк. В этом случае предложение where отсутствует, но мы все еще используем индекс, который в этом случае просто np.arange в списке строк.

300MM строк занимает 2,2 ГБ. что слишком много для Windows 32-бит (обычно максимальный размер составляет около 1 ГБ). В 64-битном случае это не проблема.

In [1]: np.arange(0,300000000).nbytes/(1024*1024*1024.0)
Out[1]: 2.2351741790771484

Таким образом, это должно быть обработано семантикой среза, что сделало бы это всего лишь тривиальным объемом памяти. Проблема открылась здесь.

Поэтому я бы предложил это. Здесь индексатор вычисляется напрямую, и это обеспечивает семантику итератора.

In [1]: df = DataFrame(np.random.randn(1000,2),columns=list('AB'))

In [2]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)

In [3]: store = pd.HDFStore('test.h5')

In [4]: nrows = store.get_storer('df').nrows

In [6]: chunksize = 100

In [7]: for i in xrange(nrows//chunksize + 1):
            chunk = store.select('df',
                                 start=i*chunksize,
                                 stop=(i+1)*chunksize)
            # work on the chunk    

In [8]: store.close()