Spark Launcher ждет завершения задания бесконечно

Я пытаюсь отправить JAR с заданием Spark в кластер YARN из кода Java. Я использую SparkLauncher для отправки примера SparkPi:

Process spark = new SparkLauncher()
    .setAppResource("C:\\spark-1.4.1-bin-hadoop2.6\\lib\\spark-examples-1.4.1-hadoop2.6.0.jar")
    .setMainClass("org.apache.spark.examples.SparkPi")
    .setMaster("yarn-cluster")
    .launch();
System.out.println("Waiting for finish...");
int exitCode = spark.waitFor();
System.out.println("Finished! Exit code:" + exitCode);

Есть две проблемы:

  • При отправке в режиме "пряжи-кластер" приложение успешно передается в YARN и выполняется успешно (оно отображается в пользовательском интерфейсе YARN, который отображается как SUCCESS, а pi печатается на выходе). Однако подающее приложение никогда не уведомляется о завершении обработки - оно бесконечно зависает после печати "Ожидание до завершения...". Журнал контейнера можно найти здесь
  • При отправке в режиме "пряжи-клиент" приложение не появляется в пользовательском интерфейсе YARN, а приложение, зависящее от "Ожидание до завершения...". Когда висящий код убит, приложение отображается в пользовательском интерфейсе YARN, и оно сообщается как SUCCESS, но выход пуст (pi не распечатывается). Журнал контейнера можно найти здесь

Я попытался выполнить подающее приложение как с Oracle Java 7, так и с 8.

Ответ 1

Я получил помощь в списке рассылки Spark. Ключ должен читать/очищать getInputStream и getErrorStream() в процессе. Детский процесс может заполнить буфер и вызвать тупик - см. Документация Oracle относительно процесса. Потоки должны читаться в отдельных потоках:

Process spark = new SparkLauncher()
    .setSparkHome("C:\\spark-1.4.1-bin-hadoop2.6")
    .setAppResource("C:\\spark-1.4.1-bin-hadoop2.6\\lib\\spark-examples-1.4.1-hadoop2.6.0.jar")
    .setMainClass("org.apache.spark.examples.SparkPi").setMaster("yarn-cluster").launch();

InputStreamReaderRunnable inputStreamReaderRunnable = new InputStreamReaderRunnable(spark.getInputStream(), "input");
Thread inputThread = new Thread(inputStreamReaderRunnable, "LogStreamReader input");
inputThread.start();

InputStreamReaderRunnable errorStreamReaderRunnable = new InputStreamReaderRunnable(spark.getErrorStream(), "error");
Thread errorThread = new Thread(errorStreamReaderRunnable, "LogStreamReader error");
errorThread.start();

System.out.println("Waiting for finish...");
int exitCode = spark.waitFor();
System.out.println("Finished! Exit code:" + exitCode);

где класс InputStreamReaderRunnable:

public class InputStreamReaderRunnable implements Runnable {

    private BufferedReader reader;

    private String name;

    public InputStreamReaderRunnable(InputStream is, String name) {
        this.reader = new BufferedReader(new InputStreamReader(is));
        this.name = name;
    }

    public void run() {
        System.out.println("InputStream " + name + ":");
        try {
            String line = reader.readLine();
            while (line != null) {
                System.out.println(line);
                line = reader.readLine();
            }
            reader.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Ответ 2

Поскольку это старый пост, я хотел бы добавить обновление, которое могло бы помочь кому-либо прочитать это сообщение после. В искрах 1.6.0 есть некоторые дополнительные функции в классе SparkLauncher. Что есть:

def startApplication(listeners: <repeated...>[Listener]): SparkAppHandle

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.launcher.SparkLauncher

Вы можете запустить приложение с необходимостью дополнительных потоков для stdout и stderr обработки плюша, есть хорошая отчетность о состоянии запущенного приложения. Используйте этот код:

  val env = Map(
      "HADOOP_CONF_DIR" -> hadoopConfDir,
      "YARN_CONF_DIR" -> yarnConfDir
    )
  val handler = new SparkLauncher(env.asJava)
      .setSparkHome(sparkHome)
      .setAppResource("Jar/location/.jar")
      .setMainClass("path.to.the.main.class")
      .setMaster("yarn-client")
      .setConf("spark.app.id", "AppID if you have one")
      .setConf("spark.driver.memory", "8g")
      .setConf("spark.akka.frameSize", "200")
      .setConf("spark.executor.memory", "2g")
      .setConf("spark.executor.instances", "32")
      .setConf("spark.executor.cores", "32")
      .setConf("spark.default.parallelism", "100")
      .setConf("spark.driver.allowMultipleContexts","true")
      .setVerbose(true)
      .startApplication()
println(handle.getAppId)
println(handle.getState)

Вы можете сохранить завоевание состояния, если искровое приложение пока оно не даст успеха. Сведения о работе сервера Spark Launcher в версии 1.6.0. см. эту ссылку: https://github.com/apache/spark/blob/v1.6.0/launcher/src/main/java/org/apache/spark/launcher/LauncherServer.java

Ответ 3

Я реализовал с помощью CountDownLatch, и он работает так, как ожидалось. Это для SparkLauncher версии 2.0.1, и он также работает в режиме с прямыми кластерами.

    ...
final CountDownLatch countDownLatch = new CountDownLatch(1);
SparkAppListener sparkAppListener = new SparkAppListener(countDownLatch);
SparkAppHandle appHandle = sparkLauncher.startApplication(sparkAppListener);
Thread sparkAppListenerThread = new Thread(sparkAppListener);
sparkAppListenerThread.start();
long timeout = 120;
countDownLatch.await(timeout, TimeUnit.SECONDS);    
    ...

private static class SparkAppListener implements SparkAppHandle.Listener, Runnable {
    private static final Log log = LogFactory.getLog(SparkAppListener.class);
    private final CountDownLatch countDownLatch;
    public SparkAppListener(CountDownLatch countDownLatch) {
        this.countDownLatch = countDownLatch;
    }
    @Override
    public void stateChanged(SparkAppHandle handle) {
        String sparkAppId = handle.getAppId();
        State appState = handle.getState();
        if (sparkAppId != null) {
            log.info("Spark job with app id: " + sparkAppId + ",\t State changed to: " + appState + " - "
                    + SPARK_STATE_MSG.get(appState));
        } else {
            log.info("Spark job state changed to: " + appState + " - " + SPARK_STATE_MSG.get(appState));
        }
        if (appState != null && appState.isFinal()) {
            countDownLatch.countDown();
        }
    }
    @Override
    public void infoChanged(SparkAppHandle handle) {}
    @Override
    public void run() {}
}