Как использовать технику проекции/камеры в С#

Я нарисовал следующую сетку:

Grid (Top-View)

Вышеуказанная сетка рисуется с использованием следующих двух методов: один для вычисления сетки, а другой для вычисления центров для каждой ячейки:

//makes grid in picture box
private void drawGrid(int numOfCells, int cellSize, Graphics gr)
{
    Pen p = new Pen(Color.SteelBlue);

    for (int i = 0; i < Math.Sqrt(numOfCells) + 1; i++)
    {
        // Vertical
        gr.DrawLine(p, i * cellSize + 300, 200, i * cellSize + 300, 700);
        // Horizontal
        gr.DrawLine(p, 300, i * cellSize+200, 800, i * cellSize+200);
    }

    this.topology.SendToBack();
}


//draw the center point for each cell of the grid 
private void drawCenters(Graphics gr)
{
    for (int j = 0; j < rows; j++)
    {
        for (int i = 0; i < columns; i++)
        {
            gr.FillRectangle(Brushes.IndianRed, cellsCenters[0, i], cellsCenters[1, j], 3, 3);
        }
    }
}

Мой вопрос заключается в том, как сделать эту сетку такой, как на следующем рисунке, и как разместить узлы в разных ячейках (случайное развертывание) в такой сетке.

Ожидаемый результат

Мне нужна сетка, которую нужно нарисовать в трехмерном представлении, в котором у меня есть z, а также x и y!

Ответ 1

Примечание. Многие из конструкций уже существуют в той или иной форме, здесь я показываю вам, как это сделать с нуля. введите описание изображения здесь То же управление, те же данные, разные перспективы

Так как ваши данные трехмерны, вам нужно хранить ваши позиционные данные 3-мерными, поэтому вам не нужно каждый раз вычислять все вручную при изменении перспективы:

[TypeConverter(typeof(ExpandableObjectConverter))]
public struct Point3D
{
    public int X { get; set; }
    public int Y { get; set; }
    public int Z { get; set; }

    public Point3D(int x, int y, int z)
    {
        X = x;
        Y = y;
        Z = z;
    }
}

Чтобы проецировать эти трехмерные точки на координаты экрана (2D), вам нужна какая-то система проекции/камеры. Обычно вы делаете это с помощью Matrix/Vector math, но для этого примера будет достаточен следующий орфографический подход.

Перспектива обрабатывает преобразование из 3D в 2D. В зависимости от параметров ваша графика будет перекошена /roatate/translate и т.д.

[TypeConverter(typeof(ExpandableObjectConverter))]
public class Perspective
{
    public float X_shift { get; set; } = 0.0f;
    public float Y_shift { get; set; } = 0.0f;

    public float X_x { get; set; } = 1.0f;
    public float X_y { get; set; } = 0.0f;
    public float X_z { get; set; } = 0.0f;

    public float Y_x { get; set; } = 0.0f;
    public float Y_y { get; set; } = 1.0f;
    public float Y_z { get; set; } = 0.0f;

    public PointF Project(Point3D p)
    {
        return new PointF(X_shift + X_x * p.X + X_y * p.Y + X_z * p.Z, Y_shift + Y_x * p.X + Y_y * p.Y + Y_z * p.Z);
    }
}

Теперь вам нужно сделать все, как обычно, но с 3D-координатами, переведенными в 2D. Следующее управление рисует сетку (на глубине 400) и два датчика.

using System.Drawing;
using System.Windows.Forms;

namespace WindowsFormsApp1
{
    public class PerspectiveGrid : Control
    {
        private Perspective _perspective;

        public Perspective Perspective
        {
            get { return _perspective; }
            set
            {
                _perspective = value; 
                Invalidate();
            }
        }

        public PerspectiveGrid()
        {
            Perspective = new Perspective
            {
                X_shift = 100,
                Y_shift = 10,

                X_x = -0.2f,
                X_y = 1.0f,
                X_z = 0.0f,

                Y_x = 0.2f,
                Y_y = 0.0f,
                Y_z = 1.0f,
            };
        }

        /// <summary>
        /// Paints a Grid at Z = 400 and two Sensors
        /// </summary>
        protected override void OnPaint(PaintEventArgs e)
        {
            DrawGrid(10,40,400,e.Graphics);

            DrawSensor(new Point3D(80, 120, 400), new Point3D(80, 120, 200), e.Graphics);
            DrawSensor(new Point3D(240, 240, 400), new Point3D(240, 240, 120), e.Graphics);
        }

        /// <summary>
        /// Draws a sensor at the specified position(s)
        /// </summary>
        private void DrawSensor(Point3D from, Point3D to, Graphics gr)
        {
            DrawLine(gr, Pens.Black, from, to);
            DrawSphere(gr, Pens.Black, Brushes.Orange, to, 6);
        }

        /// <summary>
        /// Draws a sphere as a Circle at the specified position
        /// </summary>
        private void DrawSphere(Graphics gr, Pen outline, Brush fill, Point3D center, float radius)
        {
            PointF center2D = Project(center);
            gr.FillEllipse(fill, center2D.X - radius, center2D.Y - radius, radius * 2, radius * 2);
            gr.DrawEllipse(outline, center2D.X - radius, center2D.Y - radius, radius * 2, radius * 2);
        }

        /// <summary>
        /// Draws the grid at the specified depth
        /// </summary>
        private void DrawGrid(int numOfCells, int cellSize, int depth, Graphics gr)
        {
            Pen p = Pens.SteelBlue;

            for (int i = 0; i <= numOfCells; i++)
            {
                // Vertical
                DrawLine(gr, p, new Point3D(i * cellSize, 0 , depth), new Point3D(i * cellSize, numOfCells * cellSize, depth));
                // Horizontal
                DrawLine(gr, p, new Point3D(0, i * cellSize, depth), new Point3D(numOfCells * cellSize, i * cellSize, depth));
            }
        }

        /// <summary>
        /// Draws a line from one 3DPoint to another
        /// </summary>
        private void DrawLine(Graphics graphics, Pen pen, Point3D p1, Point3D p2)
        {
            PointF pointFrom = Project(p1);
            PointF pointTo = Project(p2);

            graphics.DrawLine(pen, pointFrom, pointTo);
        }

        /// <summary>
        /// Projects a Point3D to a PointF
        /// </summary>
        private PointF Project(Point3D p)
        {
            return Perspective.Project(p);
        }
    }
}

Несколько ссылок, которые могут помочь вам в разработке этих концепций:

Ортографическая проекция
Quaternion
Математическая библиотека с поддержкой матриц и векторов