Интересно, есть ли у кого-нибудь пример кода нейронной сети в python. Если кто-то знает какой-то учебник с полным пошаговым руководством, это было бы потрясающе, но просто пример источника был бы замечательным!
Спасибо
Интересно, есть ли у кого-нибудь пример кода нейронной сети в python. Если кто-то знает какой-то учебник с полным пошаговым руководством, это было бы потрясающе, но просто пример источника был бы замечательным!
Спасибо
Взгляните на Изучение кликов из книги Программирование Коллективный разум.
Вот простой пример Армина Риго: http://codespeak.net/pypy/dist/demo/bpnn.py. Если вы хотите использовать более сложные вещи, есть также http://pybrain.org.
Изменить: Ссылка не работает. Во всяком случае, текущий способ работы с нейронными сетями в python, вероятно, Theano.
Нашел эту интересную дискуссию на форумах ubuntu http://ubuntuforums.org/showthread.php?t=320257
import time
import random
# Learning rate:
# Lower = slower
# Higher = less precise
rate=.2
# Create random weights
inWeight=[random.uniform(0, 1), random.uniform(0, 1)]
# Start neuron with no stimuli
inNeuron=[0.0, 0.0]
# Learning table (or gate)
test =[[0.0, 0.0, 0.0]]
test+=[[0.0, 1.0, 1.0]]
test+=[[1.0, 0.0, 1.0]]
test+=[[1.0, 1.0, 1.0]]
# Calculate response from neural input
def outNeuron(midThresh):
global inNeuron, inWeight
s=inNeuron[0]*inWeight[0] + inNeuron[1]*inWeight[1]
if s>midThresh:
return 1.0
else:
return 0.0
# Display results of test
def display(out, real):
if out == real:
print str(out)+" should be "+str(real)+" ***"
else:
print str(out)+" should be "+str(real)
while 1:
# Loop through each lesson in the learning table
for i in range(len(test)):
# Stimulate neurons with test input
inNeuron[0]=test[i][0]
inNeuron[1]=test[i][1]
# Adjust weight of neuron #1
# based on feedback, then display
out = outNeuron(2)
inWeight[0]+=rate*(test[i][2]-out)
display(out, test[i][2])
# Adjust weight of neuron #2
# based on feedback, then display
out = outNeuron(2)
inWeight[1]+=rate*(test[i][2]-out)
display(out, test[i][2])
# Delay
time.sleep(1)
EDIT: существует также структура с именем chainer https://pypi.python.org/pypi/chainer/1.0.0
Возможно, вы захотите взглянуть на Монте:
Монте (python) - это структура Python для построения градиентного обучения машины, такие как нейронные сети, условные случайные поля, логистика регрессия и т.д. Монте содержит модулей (которые содержат параметры, функция стоимости и функция градиента) и тренеров (которые могут адаптировать параметров модуля, минимизируя его функция затрат на данные обучения).
Модули обычно состоят из других модули, которые, в свою очередь, могут содержать другие модули и т.д. Градиенты такие разлагаемые системы могут быть вычисленный с обратным распространением.
Вот вероятностный учебник по нейронной сети: http://www.youtube.com/watch?v=uAKu4g7lBxU
И моя реализация Python:
import math
data = {'o' : [(0.2, 0.5), (0.5, 0.7)],
'x' : [(0.8, 0.8), (0.4, 0.5)],
'i' : [(0.8, 0.5), (0.6, 0.3), (0.3, 0.2)]}
class Prob_Neural_Network(object):
def __init__(self, data):
self.data = data
def predict(self, new_point, sigma):
res_dict = {}
np = new_point
for k, v in self.data.iteritems():
res_dict[k] = sum(self.gaussian_func(np[0], np[1], p[0], p[1], sigma) for p in v)
return max(res_dict.iteritems(), key=lambda k : k[1])
def gaussian_func(self, x, y, x_0, y_0, sigma):
return math.e ** (-1 *((x - x_0) ** 2 + (y - y_0) ** 2) / ((2 * (sigma ** 2))))
prob_nn = Prob_Neural_Network(data)
res = prob_nn.predict((0.2, 0.6), 0.1)
Результат:
>>> res
('o', 0.6132686067117191)