У меня есть интерфейс, использующий idiom pimpl
, однако интерфейс должен быть реентерабельным. Однако при вызове потоков не нужно знать о блокировке. Это вопрос из четырех частей и одна часть, специально надуманная примером С++ 11 (пример включен для решения нескольких часто задаваемых вопросов, которые я выполнил по re: locking
, pimpl
, rvalue
и С++ 11, где ответы были несколько сомнительными по своему качеству).
В заголовке example.hpp:
#ifndef EXAMPLE_HPP
#define EXAMPLE_HPP
#include <memory>
#include <string>
#ifndef BOOST_THREAD_SHARED_MUTEX_HPP
# include <boost/thread/shared_mutex.hpp>
#endif
namespace stackoverflow {
class Example final {
public:
typedef ::boost::shared_mutex shared_mtx_t;
typedef ::boost::shared_lock< shared_mtx_t > shared_lock_t;
typedef ::boost::unique_lock< shared_mtx_t > unique_lock_t;
Example();
Example(const std::string& initial_foo);
~Example();
Example(const Example&) = delete; // Prevent copying
Example& operator=(const Example&) = delete; // Prevent assignment
// Example getter method that supports rvalues
std::string foo() const;
// Example setter method using perfect forwarding & move semantics. Anything
// that std::string-like will work as a parameter.
template<typename T>
bool foo_set(T&& new_val);
// Begin foo_set() variants required to deal with C types (e.g. char[],
// char*). The rest of the foo_set() methods here are *NOT* required under
// normal circumstances.
// Setup a specialization for const char[] that simply forwards along a
// std::string. This is preferred over having to explicitly instantiate a
// bunch of const char[N] templates or possibly std::decay a char[] to a
// char* (i.e. using a std::string as a container is a Good Thing(tm)).
//
// Also, without this, it is required to explicitly instantiate the required
// variants of const char[N] someplace. For example, in example.cpp:
//
// template bool Example::foo_set<const char(&)[6]>(char const (&)[6]);
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
// template bool Example::foo_set<const char(&)[8]>(char const (&)[8]);
// ...
//
// Eww. Best to just forward to wrap new_val in a std::string and proxy
// along the call to foo_set<std::string>().
template<std::size_t N>
bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); }
// Inline function overloads to support null terminated char* && const
// char* arguments. If there a way to reduce this duplication with
// templates, I'm all ears because I wasn't able to generate a templated
// versions that didn't conflict with foo_set<T&&>().
bool foo_set(char* new_val) { return foo_set(std::string(new_val)); }
bool foo_set(const char* new_val) { return foo_set(std::string(new_val)); }
// End of the foo_set() overloads.
// Example getter method for a POD data type
bool bar(const std::size_t len, char* dst) const;
std::size_t bar_capacity() const;
// Example setter that uses a unique lock to access foo()
bool bar_set(const std::size_t len, const char* src);
// Question #1: I can't find any harm in making Impl public because the
// definition is opaque. Making Impl public, however, greatly helps with
// implementing Example, which does have access to Example::Impl's
// interface. This is also preferre, IMO, over using friend.
class Impl;
private:
mutable shared_mtx_t rw_mtx_;
std::unique_ptr<Impl> impl_;
};
} // namespace stackoverflow
#endif // EXAMPLE_HPP
И затем в реализации:
#include "example.hpp"
#include <algorithm>
#include <cstring>
#include <utility>
namespace stackoverflow {
class Example;
class Example::Impl;
#if !defined(_MSC_VER) || _MSC_VER > 1600
// Congratulations!, you're using a compiler that isn't broken
// Explicitly instantiate std::string variants
template bool Example::foo_set<std::string>(std::string&& src);
template bool Example::foo_set<std::string&>(std::string& src);
template bool Example::foo_set<const std::string&>(const std::string& src);
// The following isn't required because of the array Example::foo_set()
// specialization, but I'm leaving it here for reference.
//
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
#else
// MSVC workaround: msvc_rage_hate() isn't ever called, but use it to
// instantiate all of the required templates.
namespace {
void msvc_rage_hate() {
Example e;
const std::string a_const_str("a");
std::string a_str("b");
e.foo_set(a_const_str);
e.foo_set(a_str);
e.foo_set("c");
e.foo_set(std::string("d"));
}
} // anon namespace
#endif // _MSC_VER
// Example Private Implementation
class Example::Impl final {
public:
// ctors && obj boilerplate
Impl();
Impl(const std::string& init_foo);
~Impl() = default;
Impl(const Impl&) = delete;
Impl& operator=(const Impl&) = delete;
// Use a template because we don't care which Lockable concept or LockType
// is being used, just so long as a lock is held.
template <typename LockType>
bool bar(LockType& lk, std::size_t len, char* dst) const;
template <typename LockType>
std::size_t bar_capacity(LockType& lk) const;
// bar_set() requires a unique lock
bool bar_set(unique_lock_t& lk, const std::size_t len, const char* src);
template <typename LockType>
std::string foo(LockType& lk) const;
template <typename T>
bool foo_set(unique_lock_t& lk, T&& src);
private:
// Example datatype that supports rvalue references
std::string foo_;
// Example POD datatype that doesn't support rvalue
static const std::size_t bar_capacity_ = 16;
char bar_[bar_capacity_ + 1];
};
// Example delegating ctor
Example::Impl::Impl() : Impl("default foo value") {}
Example::Impl::Impl(const std::string& init_foo) : foo_{init_foo} {
std::memset(bar_, 99 /* ASCII 'c' */, bar_capacity_);
bar_[bar_capacity_] = '\0'; // null padding
}
template <typename LockType>
bool
Example::Impl::bar(LockType& lk, const std::size_t len, char* dst) const {
BOOST_ASSERT(lk.owns_lock());
if (len != bar_capacity(lk))
return false;
std::memcpy(dst, bar_, len);
return true;
}
template <typename LockType>
std::size_t
Example::Impl::bar_capacity(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return Impl::bar_capacity_;
}
bool
Example::Impl::bar_set(unique_lock_t &lk, const std::size_t len, const char* src) {
BOOST_ASSERT(lk.owns_lock());
// Return false if len is bigger than bar_capacity or the values are
// identical
if (len > bar_capacity(lk) || foo(lk) == src)
return false;
// Copy src to bar_, a side effect of updating foo_ if they're different
std::memcpy(bar_, src, std::min(len, bar_capacity(lk)));
foo_set(lk, std::string(src, len));
return true;
}
template <typename LockType>
std::string
Example::Impl::foo(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return foo_;
}
template <typename T>
bool
Example::Impl::foo_set(unique_lock_t &lk, T&& src) {
BOOST_ASSERT(lk.owns_lock());
if (foo_ == src) return false;
foo_ = std::move(src);
return true;
}
// Example Public Interface
Example::Example() : impl_(new Impl{}) {}
Example::Example(const std::string& init_foo) : impl_(new Impl{init_foo}) {}
Example::~Example() = default;
bool
Example::bar(const std::size_t len, char* dst) const {
shared_lock_t lk(rw_mtx_);
return impl_->bar(lk, len , dst);
}
std::size_t
Example::bar_capacity() const {
shared_lock_t lk(rw_mtx_);
return impl_->bar_capacity(lk);
}
bool
Example::bar_set(const std::size_t len, const char* src) {
unique_lock_t lk(rw_mtx_);
return impl_->bar_set(lk, len, src);
}
std::string
Example::foo() const {
shared_lock_t lk(rw_mtx_);
return impl_->foo(lk);
}
template<typename T>
bool
Example::foo_set(T&& src) {
unique_lock_t lk(rw_mtx_);
return impl_->foo_set(lk, std::forward<T>(src));
}
} // namespace stackoverflow
И мои вопросы:
- Есть ли лучший способ справиться с блокировкой внутри частной реализации?
- Есть ли какой-либо фактический вред при создании Impl public, если определение непрозрачно?
- При использовании clang
-O4
для включения Оптимизация времени привязки должно быть возможно, чтобы компоновщик обошел служебные данные разницыstd::unique_ptr
. Кто-нибудь подтвердил это? - Есть ли способ вызвать
foo_set("asdf")
и правильно ли ссылаться на этот пример? У нас возникают проблемы с выяснением того, что для явного создания шаблона дляconst char[6]
. На данный момент я настроил специализацию шаблона, который создает объектstd::string
и проксирует вызов для foo_set(). Все, что считается, кажется лучшим путем, но я хотел бы знать, как передать результат "asdf" иstd::decay
.
Что касается стратегии блокировки, я разработал очевидный уклон к этому по нескольким причинам:
- Я могу изменить мьютекс как эксклюзивный мьютекс, где это необходимо
- При разработке API-интерфейса Impl для включения требуемой блокировки существует очень сильная гарантия времени на сборку семантики блокировки
- Трудно забыть что-то заблокировать (и ошибка "простого API", когда это произойдет, снова компилятор поймает это, как только API будет исправлен)
- Трудно оставить что-то заблокированное или создать мертвую блокировку из-за RAII и иметь Impl не ссылаться на мьютекс
- Использование шаблонов устраняет необходимость перехода с уникальной блокировки на общую блокировку
- Поскольку эта стратегия блокировки охватывает больше кода, чем требуется на самом деле, требуется явное усилие, чтобы понизить блокировку от уникальной до общей, которая обрабатывает слишком общий сценарий, где предположения, сделанные с использованием общей блокировки, должны быть повторно протестированы при вводе уникальная заблокированная область
- Исправления ошибок или изменения API-интерфейса Impl не требуют перекомпиляции всего приложения, так как example.hpp API внешне исправлен.
Я читал, что ACE использует этот тип стратегии блокировки, но я рад некоторой критической критике со стороны пользователей ACE или другие: переключение блокировки в качестве необходимой части интерфейса.
Для полноты, здесь example_main.cpp для людей, чтобы пережевывать.
#include <sysexits.h>
#include <cassert>
#include <iostream>
#include <memory>
#include <stdexcept>
#include "example.hpp"
int
main(const int /*argc*/, const char** /*argv*/) {
using std::cout;
using std::endl;
using stackoverflow::Example;
{
Example e;
cout << "Example foo w/ empty ctor arg: " << e.foo() << endl;
}
{
Example e("foo");
cout << "Example foo w/ ctor arg: " << e.foo() << endl;
}
try {
Example e;
{ // Test assignment from std::string
std::string str("cccccccc");
e.foo_set(str);
assert(e.foo() == "cccccccc"); // Value is the same
assert(str.empty()); // Stole the contents of a_str
}
{ // Test assignment from a const std::string
const std::string const_str("bbbbbbb");
e.foo_set(const_str);
assert(const_str == "bbbbbbb"); // Value is the same
assert(const_str.c_str() != e.foo().c_str()); // Made a copy
}
{
// Test a const char[7] and a temporary std::string
e.foo_set("foobar");
e.foo_set(std::string("ddddd"));
}
{ // Test char[7]
char buf[7] = {"foobar"};
e.foo_set(buf);
assert(e.foo() == "foobar");
}
{ //// And a *char[] & const *char[]
// Use unique_ptr to automatically free buf
std::unique_ptr<char[]> buf(new char[7]);
std::memcpy(buf.get(), "foobar", 6);
buf[6] = '\0';
e.foo_set(buf.get());
const char* const_ptr = buf.get();
e.foo_set(const_ptr);
assert(e.foo() == "foobar");
}
cout << "Example bar capacity: " << e.bar_capacity() << endl;
const std::size_t len = e.bar_capacity();
std::unique_ptr<char[]> buf(new char[len +1]);
// Copy bar in to buf
if (!e.bar(len, buf.get()))
throw std::runtime_error("Unable to get bar");
buf[len] = '\0'; // Null terminate the C string
cout << endl << "foo and bar (a.k.a.) have different values:" << endl;
cout << "Example foo value: " << e.foo() << endl;
cout << "Example bar value: " << buf.get() << endl;
// Set bar, which has a side effect of calling foo_set()
buf[0] = 'c'; buf[1] = buf[2] = '+'; buf[3] = '\0';
if (!e.bar_set(sizeof("c++") - 1, buf.get()))
throw std::runtime_error("Unable to set bar");
cout << endl << "foo and bar now have identical values but only one lock was acquired when setting:" << endl;
cout << "Example foo value: " << e.foo() << endl;
cout << "Example bar value: " << buf.get() << endl;
} catch (...) {
return EX_SOFTWARE;
}
return EX_OK;
}
И создайте инструкции для использования C++11
и libc++
:
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example.cpp.o -c example.cpp
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example_main.cpp.o -c example_main.cpp
clang++ -O4 -stdlib=libc++ -o example example.cpp.o example_main.cpp.o /path/to/boost/lib/libboost_exception-mt.dylib /path/to/boost/lib/libboost_system-mt.dylib /path/to/boost/lib/libboost_thread-mt.dylib
В качестве небольшого бонуса я обновил этот пример, включив в него идеальную пересылку с использованием ссылок rvalue в методе foo_set()
. Хотя это и не идеально, потребовалось больше времени, чем я ожидал, чтобы получить правильность создания шаблона, что является проблемой при связывании. Это также включает соответствующие перегрузки для базовых типов C, включая: char*
, const char*
, char[N]
и const char[N]
.