Я хотел бы повернуть гистограмму в R, построенную по hist(). Вопрос не новый, и на нескольких форумах я обнаружил, что это невозможно. Однако все эти ответы датируются 2010 годом или даже позже.
Кто-нибудь нашел решение тем временем?
Один из способов обойти проблему заключается в построении гистограммы через barplot(), которая предлагает вариант "horiz = TRUE". Сюжет отлично работает, но я не могу наложить плотность в баррелях. Проблема, вероятно, лежит в оси х, так как в вертикальном графике плотность центрируется в первом бункере, тогда как в горизонтальном графике кривая плотности перепутана.
Любая помощь очень ценится!
Спасибо,
Нильс
код:
require(MASS)
Sigma <- matrix(c(2.25, 0.8, 0.8, 1), 2, 2)
mvnorm <- mvrnorm(1000, c(0,0), Sigma)
scatterHist.Norm <- function(x,y) {
zones <- matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
layout(zones, widths=c(2/3,1/3), heights=c(1/3,2/3))
xrange <- range(x) ; yrange <- range(y)
par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="", cex=0.5)
xhist <- hist(x, plot=FALSE, breaks=seq(from=min(x), to=max(x), length.out=20))
yhist <- hist(y, plot=FALSE, breaks=seq(from=min(y), to=max(y), length.out=20))
top <- max(c(xhist$counts, yhist$counts))
par(mar=c(0,3,1,1))
plot(xhist, axes=FALSE, ylim=c(0,top), main="", col="grey")
x.xfit <- seq(min(x),max(x),length.out=40)
x.yfit <- dnorm(x.xfit,mean=mean(x),sd=sd(x))
x.yfit <- x.yfit*diff(xhist$mids[1:2])*length(x)
lines(x.xfit, x.yfit, col="red")
par(mar=c(0,3,1,1))
plot(yhist, axes=FALSE, ylim=c(0,top), main="", col="grey", horiz=TRUE)
y.xfit <- seq(min(x),max(x),length.out=40)
y.yfit <- dnorm(y.xfit,mean=mean(x),sd=sd(x))
y.yfit <- y.yfit*diff(yhist$mids[1:2])*length(x)
lines(y.xfit, y.yfit, col="red")
}
scatterHist.Norm(mvnorm[,1], mvnorm[,2])
scatterBar.Norm <- function(x,y) {
zones <- matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
layout(zones, widths=c(2/3,1/3), heights=c(1/3,2/3))
xrange <- range(x) ; yrange <- range(y)
par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="", cex=0.5)
xhist <- hist(x, plot=FALSE, breaks=seq(from=min(x), to=max(x), length.out=20))
yhist <- hist(y, plot=FALSE, breaks=seq(from=min(y), to=max(y), length.out=20))
top <- max(c(xhist$counts, yhist$counts))
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
x.xfit <- seq(min(x),max(x),length.out=40)
x.yfit <- dnorm(x.xfit,mean=mean(x),sd=sd(x))
x.yfit <- x.yfit*diff(xhist$mids[1:2])*length(x)
lines(x.xfit, x.yfit, col="red")
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)
y.xfit <- seq(min(x),max(x),length.out=40)
y.yfit <- dnorm(y.xfit,mean=mean(x),sd=sd(x))
y.yfit <- y.yfit*diff(yhist$mids[1:2])*length(x)
lines(y.xfit, y.yfit, col="red")
}
scatterBar.Norm(mvnorm[,1], mvnorm[,2])
#
Источник графика рассеяния с маргинальными гистограммами (нажмите первую ссылку после "адаптировано из..." ):
Источник плотности в диаграмме рассеяния: