Большое целочисленное дополнение с CUDA

Я разрабатываю криптографический алгоритм на графическом процессоре и в настоящее время придерживаюсь алгоритма для выполнения большого целочисленного добавления. Большие целые числа представляются обычным способом как куча 32-битных слов.

Например, мы можем использовать один поток для добавления двух 32-битных слов. Для простоты предположим, что что добавляемые числа имеют одинаковую длину и количество потоков на каждый блок == количество слов. Тогда:

__global__ void add_kernel(int *C, const int *A, const int *B) {
     int x = A[threadIdx.x];
     int y = B[threadIdx.x];
     int z = x + y;
     int carry = (z < x);
     /** do carry propagation in parallel somehow ? */
     ............

     z = z + newcarry; // update the resulting words after carry propagation
     C[threadIdx.x] = z;
 }

Я уверен, что есть способ сделать перенос распространения через некоторую сложную процедуру сокращения, но не мог понять это.

Я просмотрел расширения CUDA thrust extensions, но большой целочисленный пакет, похоже, еще не реализован. Возможно, кто-то может дать мне подсказку, как это сделать на CUDA?

Ответ 1

Вы правы, распространение переноса может быть выполнено с помощью вычисления суммы префикса, но немного сложно определить двоичную функцию для этой операции и доказать, что она ассоциативна (необходима для параллельной префиксной суммы). Фактически, этот алгоритм используется (теоретически) в суммируемом переноске.

Предположим, что у нас есть два больших целых числа a [0..n-1] и b [0..n-1]. Затем мы вычисляем (i = 0..n-1):

s[i] = a[i] + b[i]l;
carryin[i] = (s[i] < a[i]);

Определим две функции:

generate[i] = carryin[i];
propagate[i] = (s[i] == 0xffffffff);

с довольно интуитивным значением: generate [i] == 1 означает, что перенос генерируется в положение я при распространении [i] == 1 означает, что перенос будет распространяться из положения (i - 1) - (i + 1). Наша цель - вычислить функцию выполнения [0..n-1], используемую для обновления результирующей суммы s [0..n-1]. выведение может быть вычислено рекурсивно следующим образом:

carryout[i] = generate[i] OR (propagate[i] AND carryout[i-1])
carryout[0] = 0

Здесь выполняется [i] == 1, если перенос генерируется в позиции я ИЛИ, он генерируется иногда раньше И, распространяемый в позицию i. Наконец, мы обновляем полученную сумму:

s[i] = s[i] + carryout[i-1];  for i = 1..n-1
carry = carryout[n-1];

Теперь довольно просто доказать, что функция выполнения действительно бинарная ассоциативная и, следовательно, применяется параллельное вычисление суммы префикса. Чтобы реализовать это на CUDA, мы можем объединить оба флага "генерировать" и "распространять" в одной переменной, поскольку они являются взаимоисключающими, т.е.:

cy[i] = (s[i] == -1u ? -1u : 0) | carryin[i];

Другими словами,

cy[i] = 0xffffffff  if propagate[i]
cy[i] = 1           if generate[i]
cy[u] = 0           otherwise

Затем можно проверить, что следующая формула вычисляет префикс sum для функции выполнения:

cy[i] = max((int)cy[i], (int)cy[k]) & cy[i];

для всех k < я. В приведенном ниже примере приведено большое дополнение для целых чисел в 2048 слов. Здесь я использовал блоки CUDA с 512 потоками:

// add & output carry flag
#define UADDO(c, a, b) \ 
     asm volatile("add.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b));
// add with carry & output carry flag
#define UADDC(c, a, b) \ 
     asm volatile("addc.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b));

#define WS 32

__global__ void bignum_add(unsigned *g_R, const unsigned *g_A,const unsigned *g_B) {

extern __shared__ unsigned shared[];
unsigned *r = shared; 

const unsigned N_THIDS = 512;
unsigned thid = threadIdx.x, thid_in_warp = thid & WS-1;
unsigned ofs, cf;

uint4 a = ((const uint4 *)g_A)[thid],
      b = ((const uint4 *)g_B)[thid];

UADDO(a.x, a.x, b.x) // adding 128-bit chunks with carry flag
UADDC(a.y, a.y, b.y)
UADDC(a.z, a.z, b.z)
UADDC(a.w, a.w, b.w)
UADDC(cf, 0, 0) // save carry-out

// memory consumption: 49 * N_THIDS / 64
// use "alternating" data layout for each pair of warps
volatile short *scan = (volatile short *)(r + 16 + thid_in_warp +
        49 * (thid / 64)) + ((thid / 32) & 1);

scan[-32] = -1; // put identity element
if(a.x == -1u && a.x == a.y && a.x == a.z && a.x == a.w)
    // this indicates that carry will propagate through the number
    cf = -1u;

// "Hillis-and-Steele-style" reduction 
scan[0] = cf;
cf = max((int)cf, (int)scan[-2]) & cf;
scan[0] = cf;
cf = max((int)cf, (int)scan[-4]) & cf;
scan[0] = cf;
cf = max((int)cf, (int)scan[-8]) & cf;
scan[0] = cf;
cf = max((int)cf, (int)scan[-16]) & cf;
scan[0] = cf;
cf = max((int)cf, (int)scan[-32]) & cf;
scan[0] = cf;

int *postscan = (int *)r + 16 + 49 * (N_THIDS / 64);
if(thid_in_warp == WS - 1) // scan leading carry-outs once again
    postscan[thid >> 5] = cf;

__syncthreads();

if(thid < N_THIDS / 32) {
    volatile int *t = (volatile int *)postscan + thid;
    t[-8] = -1; // load identity symbol
    cf = t[0];
    cf = max((int)cf, (int)t[-1]) & cf;
    t[0] = cf;
    cf = max((int)cf, (int)t[-2]) & cf;
    t[0] = cf;
    cf = max((int)cf, (int)t[-4]) & cf;
    t[0] = cf;
}
__syncthreads();

cf = scan[0];
int ps = postscan[(int)((thid >> 5) - 1)]; // postscan[-1] equals to -1
scan[0] = max((int)cf, ps) & cf; // update carry flags within warps
cf = scan[-2];

if(thid_in_warp == 0)
    cf = ps;
if((int)cf < 0)
    cf = 0;

UADDO(a.x, a.x, cf) // propagate carry flag if needed
UADDC(a.y, a.y, 0)
UADDC(a.z, a.z, 0)
UADDC(a.w, a.w, 0)
((uint4 *)g_R)[thid] = a;
}

Обратите внимание, что макросы UADDO/UADDC больше не нужны, поскольку CUDA 4.0 имеет соответствующие функции (однако я не совсем уверен).

Также отметим, что хотя параллельное сокращение выполняется довольно быстро, если вам нужно добавить несколько больших целых чисел в строку, лучше было бы использовать некоторое избыточное представление (которое было предложено в комментариях выше), т.е. сначала накапливать результаты дополнений в 64-битных словах, а затем выполнить одно перенос распространения в самом конце "одной развертки".

Ответ 2

Я думал, что также напишу свой ответ, в дополнение к @asm, так что этот вопрос SO может быть своего рода хранилищем идей. Подобно @asm, я обнаруживаю и сохраняю условие переноса, а также условие "переноса", т.е. когда результат промежуточного слова равен 1 (0xF... FFF), так что если перенос должен распространяться на это слово, он будет "переноситься" на следующее слово.

Я не использовал никаких PTX или asm в своем коде, поэтому я решил использовать 64-разрядные беззнаковые int вместо 32-разрядных, чтобы достичь возможности 2048x32bit, используя 1024 потока.

Большее отличие от кода @asm заключается в моей схеме распространения параллельных переносов. Я строю бит-упакованный массив ( "переносить" ), где каждый бит представляет условие переноса, генерируемое из независимых промежуточных 64-битных добавлений из каждого из потоков 1024. Я также создаю бит-упакованный массив ( "carry_through" ), где каждый бит представляет условие carry_through отдельных 64-битных промежуточных результатов. Для 1024 потоков это составляет 1024/64 = 16х64 бит слова разделяемой памяти для каждого бит-упакованного массива, поэтому общее использование общей памяти составляет 64 + 3 32-битных квантования. С помощью этих бит-упакованных массивов я выполняю следующее, чтобы создать комбинированный передаваемый индикатор переноса:

carry = carry | (carry_through ^ ((carry & carry_through) + carry_through);

(обратите внимание, что перенос сдвигается влево на один: carry [i] указывает, что результат [i-1] + b [i-1] создал перенос) Объяснение выглядит следующим образом:

  • поразрядный и переносящий и переносящий, генерирует кандидатов, где перенос будет взаимодействовать с последовательностью одного или нескольких условий переноса,
  • добавление результата первого шага к carry_through приводит к результату, который изменил биты, которые представляют все слова, на которые распространение переноса в последовательность carry_through
  • взяв эксклюзивный или переносимый плюс плюс результат с шага 2 показывает пораженные результаты, указанные в 1 бит
  • взятие поразрядного или результата из шага 3 и обычного индикаторы переноса дают комбинированное условие переноса, которое затем используется для обновления всех промежуточных результатов.

Обратите внимание, что добавление на шаге 2 требует добавления нескольких слов (для больших ints, состоящих из более чем 64 слов). Я считаю, что этот алгоритм работает, и он прошел тесты, которые я выбрал для него.

Вот мой пример кода, который реализует это:

// parallel add of large integers
// requires CC 2.0 or higher
// compile with:
// nvcc -O3 -arch=sm_20 -o paradd2 paradd2.cu
#include <stdio.h>
#include <stdlib.h>

#define MAXSIZE 1024 // the number of 64 bit quantities that can be added
#define LLBITS 64  // the number of bits in a long long
#define BSIZE ((MAXSIZE + LLBITS -1)/LLBITS) // MAXSIZE when packed into bits
#define nTPB MAXSIZE

// define either GPU or GPUCOPY, not both -- for timing
#define GPU
//#define GPUCOPY

#define LOOPCNT 1000

#define cudaCheckErrors(msg) \
    do { \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess) { \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)

// perform c = a + b, for unsigned integers of psize*64 bits.
// all work done in a single threadblock.
// multiple threadblocks are handling multiple separate addition problems
// least significant word is at a[0], etc.

__global__ void paradd(const unsigned size, const unsigned psize, unsigned long long *c, const unsigned long long *a, const unsigned long long *b){

  __shared__ unsigned long long carry_through[BSIZE];
  __shared__ unsigned long long carry[BSIZE+1];
  __shared__ volatile unsigned mcarry;
  __shared__ volatile unsigned mcarry_through;

  unsigned idx = threadIdx.x + (psize * blockIdx.x);
  if ((threadIdx.x < psize) && (idx < size)){
    // handle 64 bit unsigned add first
    unsigned long long cr1 = a[idx];
    unsigned long long lc = cr1 + b[idx];
    // handle carry
    if (threadIdx.x < BSIZE){
      carry[threadIdx.x] = 0;
      carry_through[threadIdx.x] = 0;
      }
    if (threadIdx.x == 0){
      mcarry = 0;
      mcarry_through = 0;
      }
    __syncthreads();
    if (lc < cr1){
      if ((threadIdx.x%LLBITS) != (LLBITS-1))  
        atomicAdd(&(carry[threadIdx.x/LLBITS]), (2ull<<(threadIdx.x%LLBITS)));
      else atomicAdd(&(carry[(threadIdx.x/LLBITS)+1]), 1);
      }
    // handle carry-through
    if (lc == 0xFFFFFFFFFFFFFFFFull) 
      atomicAdd(&(carry_through[threadIdx.x/LLBITS]), (1ull<<(threadIdx.x%LLBITS))); 
    __syncthreads();
    if (threadIdx.x < ((psize + LLBITS-1)/LLBITS)){
      // only 1 warp executing within this if statement
      unsigned long long cr3 = carry_through[threadIdx.x];
      cr1 = carry[threadIdx.x] & cr3;
      // start of sub-add
      unsigned long long cr2 = cr3 + cr1;
      if (cr2 < cr1) atomicAdd((unsigned *)&mcarry, (2u<<(threadIdx.x)));
      if (cr2 == 0xFFFFFFFFFFFFFFFFull) atomicAdd((unsigned *)&mcarry_through, (1u<<threadIdx.x));
      if (threadIdx.x == 0) {
        unsigned cr4 = mcarry & mcarry_through;
        cr4 += mcarry_through;
        mcarry |= (mcarry_through ^ cr4); 
        }
      if (mcarry & (1u<<threadIdx.x)) cr2++;
      // end of sub-add
      carry[threadIdx.x] |= (cr2 ^ cr3);
      }
    __syncthreads();
    if (carry[threadIdx.x/LLBITS] & (1ull<<(threadIdx.x%LLBITS))) lc++;
    c[idx] = lc;
  }
}

int main() {

  unsigned long long *h_a, *h_b, *h_c, *d_a, *d_b, *d_c, *c;
  unsigned at_once = 256;   // valid range = 1 .. 65535
  unsigned prob_size = MAXSIZE ; // valid range = 1 .. MAXSIZE
  unsigned dsize = at_once * prob_size;
  cudaEvent_t t_start_gpu, t_start_cpu, t_end_gpu, t_end_cpu;
  float et_gpu, et_cpu, tot_gpu, tot_cpu;
  tot_gpu = 0;
  tot_cpu = 0;


  if (sizeof(unsigned long long) != (LLBITS/8)) {printf("Word Size Error\n"); return 1;}
  if ((c = (unsigned long long *)malloc(dsize * sizeof(unsigned long long)))  == 0) {printf("Malloc Fail\n"); return 1;}

  cudaHostAlloc((void **)&h_a, dsize * sizeof(unsigned long long), cudaHostAllocDefault);
  cudaCheckErrors("cudaHostAlloc1 fail");
  cudaHostAlloc((void **)&h_b, dsize * sizeof(unsigned long long), cudaHostAllocDefault);
  cudaCheckErrors("cudaHostAlloc2 fail");
  cudaHostAlloc((void **)&h_c, dsize * sizeof(unsigned long long), cudaHostAllocDefault);
  cudaCheckErrors("cudaHostAlloc3 fail");

  cudaMalloc((void **)&d_a, dsize * sizeof(unsigned long long));
  cudaCheckErrors("cudaMalloc1 fail");
  cudaMalloc((void **)&d_b, dsize * sizeof(unsigned long long));
  cudaCheckErrors("cudaMalloc2 fail");
  cudaMalloc((void **)&d_c, dsize * sizeof(unsigned long long));
  cudaCheckErrors("cudaMalloc3 fail");
  cudaMemset(d_c, 0, dsize*sizeof(unsigned long long));

  cudaEventCreate(&t_start_gpu);
  cudaEventCreate(&t_end_gpu);
  cudaEventCreate(&t_start_cpu);
  cudaEventCreate(&t_end_cpu);

  for (unsigned loops = 0; loops <LOOPCNT; loops++){
  //create some test cases
  if (loops == 0){
  for (int j=0; j<at_once; j++)
  for (int k=0; k<prob_size; k++){
    int i= (j*prob_size) + k;
    h_a[i] = 0xFFFFFFFFFFFFFFFFull;
    h_b[i] = 0;
    }
    h_a[prob_size-1] = 0;
    h_b[prob_size-1] = 1;
    h_b[0] = 1;
  }
  else if (loops == 1){
  for (int i=0; i<dsize; i++){
    h_a[i] = 0xFFFFFFFFFFFFFFFFull;
    h_b[i] = 0;
    }
    h_b[0] = 1;
  }
  else if (loops == 2){
  for (int i=0; i<dsize; i++){
    h_a[i] = 0xFFFFFFFFFFFFFFFEull;
    h_b[i] = 2;
    }
    h_b[0] = 1;
  }
  else {
  for (int i = 0; i<dsize; i++){
    h_a[i] = (((unsigned long long)lrand48())<<33) + (unsigned long long)lrand48();
    h_b[i] = (((unsigned long long)lrand48())<<33) + (unsigned long long)lrand48();
    }
  }
#ifdef GPUCOPY
  cudaEventRecord(t_start_gpu, 0);
#endif
  cudaMemcpy(d_a, h_a, dsize*sizeof(unsigned long long), cudaMemcpyHostToDevice);
  cudaCheckErrors("cudaMemcpy1 fail");
  cudaMemcpy(d_b, h_b, dsize*sizeof(unsigned long long), cudaMemcpyHostToDevice);
  cudaCheckErrors("cudaMemcpy2 fail");
#ifdef GPU
  cudaEventRecord(t_start_gpu, 0);
#endif
  paradd<<<at_once, nTPB>>>(dsize, prob_size, d_c, d_a, d_b);
  cudaCheckErrors("Kernel Fail");
#ifdef GPU
  cudaEventRecord(t_end_gpu, 0);
#endif
  cudaMemcpy(h_c, d_c, dsize*sizeof(unsigned long long), cudaMemcpyDeviceToHost);
  cudaCheckErrors("cudaMemcpy3 fail");
#ifdef GPUCOPY
  cudaEventRecord(t_end_gpu, 0);
#endif
  cudaEventSynchronize(t_end_gpu);
  cudaEventElapsedTime(&et_gpu, t_start_gpu, t_end_gpu);
  tot_gpu += et_gpu;
  cudaEventRecord(t_start_cpu, 0);
  //also compute result on CPU for comparison
  for (int j=0; j<at_once; j++) {
    unsigned rc=0;
    for (int n=0; n<prob_size; n++){
      unsigned i = (j*prob_size) + n;
      c[i] = h_a[i] + h_b[i];
      if (c[i] < h_a[i]) {
        c[i] += rc;
        rc=1;}
      else {
        if ((c[i] += rc) != 0) rc=0;
        }
      if (c[i] != h_c[i]) {printf("Results mismatch at offset %d, GPU = 0x%lX, CPU = 0x%lX\n", i, h_c[i], c[i]); return 1;}
      }
    }
  cudaEventRecord(t_end_cpu, 0);
  cudaEventSynchronize(t_end_cpu);
  cudaEventElapsedTime(&et_cpu, t_start_cpu, t_end_cpu);
  tot_cpu += et_cpu;
  if ((loops%(LOOPCNT/10)) == 0) printf("*\n");
  }
  printf("\nResults Match!\n");
  printf("Average GPU time = %fms\n", (tot_gpu/LOOPCNT));
  printf("Average CPU time = %fms\n", (tot_cpu/LOOPCNT));

  return 0;
}