Pyspark: разделение столбцов нескольких массивов на строки

У меня есть dataframe, который имеет одну строку и несколько столбцов. Некоторые из столбцов являются одиночными значениями, а другие - списками. Все столбцы списка имеют одинаковую длину. Я хочу разбить каждый столбец списка на отдельную строку, сохраняя любой столбец без списка, как есть.

Пример DF:

df = sqlc.createDataFrame([Row(a=1, b=[1,2,3],c=[7,8,9], d='foo')])
# +---+---------+---------+---+
# |  a|        b|        c|  d|
# +---+---------+---------+---+
# |  1|[1, 2, 3]|[7, 8, 9]|foo|
# +---+---------+---------+---+

Что я хочу:

+---+---+----+------+
|  a|  b|  c |    d |
+---+---+----+------+
|  1|  1|  7 |  foo |
|  1|  2|  8 |  foo |
|  1|  3|  9 |  foo |
+---+---+----+------+

Если бы у меня был только один столбец списка, это было бы легко, просто сделав explode:

df_exploded = df.withColumn('b', explode('b'))
# >>> df_exploded.show()
# +---+---+---------+---+
# |  a|  b|        c|  d|
# +---+---+---------+---+
# |  1|  1|[7, 8, 9]|foo|
# |  1|  2|[7, 8, 9]|foo|
# |  1|  3|[7, 8, 9]|foo|
# +---+---+---------+---+

Однако, если я попытаюсь также explode столбец c, я получаю данные с длиной, квадратом которой я хочу:

df_exploded_again = df_exploded.withColumn('c', explode('c'))
# >>> df_exploded_again.show()
# +---+---+---+---+
# |  a|  b|  c|  d|
# +---+---+---+---+
# |  1|  1|  7|foo|
# |  1|  1|  8|foo|
# |  1|  1|  9|foo|
# |  1|  2|  7|foo|
# |  1|  2|  8|foo|
# |  1|  2|  9|foo|
# |  1|  3|  7|foo|
# |  1|  3|  8|foo|
# |  1|  3|  9|foo|
# +---+---+---+---+

Что я хочу - для каждого столбца возьмите n-й элемент массива в этом столбце и добавьте его в новую строку. Я пробовал сопоставлять разнесение по всем столбцам в фреймворке данных, но это тоже не работает:

df_split = df.rdd.map(lambda col: df.withColumn(col, explode(col))).toDF()

Ответ 1

С DataFrames и UDF:

from pyspark.sql.types import ArrayType, StructType, StructField, IntegerType
from pyspark.sql.functions import col, udf

zip_ = udf(
  lambda x, y: list(zip(x, y)),
  ArrayType(StructType([
      # Adjust types to reflect data types
      StructField("first", IntegerType()),
      StructField("second", IntegerType())
  ]))
)

(df
    .withColumn("tmp", zip_("b", "c"))
    # UDF output cannot be directly passed to explode
    .withColumn("tmp", explode("tmp"))
    .select("a", col("tmp.first").alias("b"), col("tmp.second").alias("c"), "d"))

С RDDs:

(df
    .rdd
    .flatMap(lambda row: [(row.a, b, c, row.d) for b, c in zip(row.b, row.c)])
    .toDF(["a", "b", "c", "d"]))

Оба решения неэффективны из-за накладных расходов на Python. Если размер данных исправлен, вы можете сделать что-то вроде этого:

from functools import reduce
from pyspark.sql import DataFrame

# Length of array
n = 3

# For legacy Python you'll need a separate function
# in place of method accessor 
reduce(
    DataFrame.unionAll, 
    (df.select("a", col("b").getItem(i), col("c").getItem(i), "d")
        for i in range(n))
).toDF("a", "b", "c", "d")

или даже:

from pyspark.sql.functions import array, struct

# SQL level zip of arrays of known size
# followed by explode
tmp = explode(array(*[
    struct(col("b").getItem(i).alias("b"), col("c").getItem(i).alias("c"))
    for i in range(n)
]))

(df
    .withColumn("tmp", tmp)
    .select("a", col("tmp").getItem("b"), col("tmp").getItem("c"), "d"))

Это должно быть значительно быстрее по сравнению с UDF или RDD. Обобщены для поддержки произвольного количества столбцов:

# This uses keyword only arguments
# If you use legacy Python you'll have to change signature
# Body of the function can stay the same
def zip_and_explode(*colnames, n):
    return explode(array(*[
        struct(*[col(c).getItem(i).alias(c) for c in colnames])
        for i in range(n)
    ]))

df.withColumn("tmp", zip_and_explode("b", "c", n=3))

Ответ 2

Вам нужно использовать flatMap, а не map, поскольку вы хотите сделать несколько выходных строк из каждой строки ввода.

from pyspark.sql import Row
def dualExplode(r):
    rowDict = r.asDict()
    bList = rowDict.pop('b')
    cList = rowDict.pop('c')
    for b,c in zip(bList, cList):
        newDict = dict(rowDict)
        newDict['b'] = b
        newDict['c'] = c
        yield Row(**newDict)

df_split = sqlContext.createDataFrame(df.rdd.flatMap(dualExplode))