Tidy data.frame с повторными именами столбцов

У меня есть программа, которая дает мне данные в этом формате

toy
                file_path Condition Trial.Num A B  C  ID A B  C   ID  A B  C    ID
1     root/some.extension  Baseline         1 2 3  5 car 2 1  7 bike  4 9  0 plane
2    root/thing.extension  Baseline         2 3 6 45 car 5 4  4 bike  9 5  4 plane
3     root/else.extension  Baseline         3 4 4  6 car 7 5  4 bike 68 7 56 plane
4 root/uniquely.extension Treatment         1 5 3  7 car 1 7 37 bike  9 8  7 plane
5  root/defined.extension Treatment         2 6 7  3 car 4 6  8 bike  9 0  8 plane

Моя цель заключается в том, чтобы прибрать формат к чему-то, что, по крайней мере, может быть проще для окончательного упорядочивания с изменением формы с уникальными именами столбцов

tidy_toy
                 file_path Condition Trial.Num  A B  C    ID
1      root/some.extension  Baseline         1  2 3  5   car
2     root/thing.extension  Baseline         2  3 6 45   car
3      root/else.extension  Baseline         3  4 4  6   car
4  root/uniquely.extension Treatment         1  5 3  7   car
5   root/defined.extension Treatment         2  6 7  3   car
6      root/some.extension  Baseline         1  2 1  7  bike
7     root/thing.extension  Baseline         2  5 4  4  bike
8      root/else.extension  Baseline         3  7 5  4  bike
9  root/uniquely.extension Treatment         1  1 7 37  bike
10  root/defined.extension Treatment         2  4 6  8  bike
11     root/some.extension  Baseline         1  4 9  0 plane
12    root/thing.extension  Baseline         2  9 5  4 plane
13     root/else.extension  Baseline         3 68 7 56 plane
14 root/uniquely.extension Treatment         1  9 8  7 plane
15  root/defined.extension Treatment         2  9 0  8 plane

Если я пытаюсь выполнить melt из toy, это не сработает, потому что для id.vars будет использоваться только первый столбец идентификатора (следовательно, все будет помечено как автомобили). Идентичные переменные будут отброшены.

Здесь dput обеих таблиц

   structure(list(file_path = structure(c(3L, 4L, 2L, 5L, 1L), .Label = c("root/defined.extension", 
    "root/else.extension", "root/some.extension", "root/thing.extension", 
    "root/uniquely.extension"), class = "factor"), Condition = structure(c(1L, 
    1L, 1L, 2L, 2L), .Label = c("Baseline", "Treatment"), class = "factor"), 
        Trial.Num = c(1L, 2L, 3L, 1L, 2L), A = 2:6, B = c(3L, 6L, 
        4L, 3L, 7L), C = c(5L, 45L, 6L, 7L, 3L), ID = structure(c(1L, 
        1L, 1L, 1L, 1L), .Label = "car", class = "factor"), A = c(2L, 
        5L, 7L, 1L, 4L), B = c(1L, 4L, 5L, 7L, 6L), C = c(7L, 4L, 
        4L, 37L, 8L), ID = structure(c(1L, 1L, 1L, 1L, 1L), .Label = "bike", class = "factor"), 
        A = c(4L, 9L, 68L, 9L, 9L), B = c(9L, 5L, 7L, 8L, 0L), C = c(0L, 
        4L, 56L, 7L, 8L), ID = structure(c(1L, 1L, 1L, 1L, 1L), .Label = "plane", class = "factor")), .Names = c("file_path", 
    "Condition", "Trial.Num", "A", "B", "C", "ID", "A", "B", "C", 
    "ID", "A", "B", "C", "ID"), class = "data.frame", row.names = c(NA, 
    -5L))


structure(list(file_path = structure(c(3L, 4L, 2L, 5L, 1L, 3L, 
4L, 2L, 5L, 1L, 3L, 4L, 2L, 5L, 1L), .Label = c("root/defined.extension", 
"root/else.extension", "root/some.extension", "root/thing.extension", 
"root/uniquely.extension"), class = "factor"), Condition = structure(c(1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L), .Label = c("Baseline", 
"Treatment"), class = "factor"), Trial.Num = c(1L, 2L, 3L, 1L, 
2L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 2L), A = c(2L, 3L, 4L, 
5L, 6L, 2L, 5L, 7L, 1L, 4L, 4L, 9L, 68L, 9L, 9L), B = c(3L, 6L, 
4L, 3L, 7L, 1L, 4L, 5L, 7L, 6L, 9L, 5L, 7L, 8L, 0L), C = c(5L, 
45L, 6L, 7L, 3L, 7L, 4L, 4L, 37L, 8L, 0L, 4L, 56L, 7L, 8L), ID = structure(c(2L, 
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L), .Label = c("bike", 
"car", "plane"), class = "factor")), .Names = c("file_path", 
"Condition", "Trial.Num", "A", "B", "C", "ID"), class = "data.frame", row.names = c(NA, 
-15L))

Ответ 1

Вы можете использовать make.unique -функцию для создания уникальных имен столбцов. После этого вы можете использовать melt из data.table -пакета, который может создавать несколько столбцов значений на основе patterns в именах столбцов:

# make the column names unique
names(toy) <- make.unique(names(toy))
# let the 'Condition' column start with a small letter 'c'
# so it won't be detected by the patterns argument from melt
names(toy)[2] <- tolower(names(toy)[2])

# load the 'data.table' package
library(data.table)
# tidy the data into long format
tidy_toy <- melt(setDT(toy), 
                 measure.vars = patterns('^A','^B','^C','^ID'), 
                 value.name = c('A','B','C','ID'))

который дает:

 > tidy_toy
                  file_path condition Trial.Num variable  A B  C    ID
 1:     root/some.extension  Baseline         1        1  2 3  5   car
 2:    root/thing.extension  Baseline         2        1  3 6 45   car
 3:     root/else.extension  Baseline         3        1  4 4  6   car
 4: root/uniquely.extension Treatment         1        1  5 3  7   car
 5:  root/defined.extension Treatment         2        1  6 7  3   car
 6:     root/some.extension  Baseline         1        2  2 1  7  bike
 7:    root/thing.extension  Baseline         2        2  5 4  4  bike
 8:     root/else.extension  Baseline         3        2  7 5  4  bike
 9: root/uniquely.extension Treatment         1        2  1 7 37  bike
10:  root/defined.extension Treatment         2        2  4 6  8  bike
11:     root/some.extension  Baseline         1        3  4 9  0 plane
12:    root/thing.extension  Baseline         2        3  9 5  4 plane
13:     root/else.extension  Baseline         3        3 68 7 56 plane
14: root/uniquely.extension Treatment         1        3  9 8  7 plane
15:  root/defined.extension Treatment         2        3  9 0  8 plane

Другой вариант - использовать список индексов столбцов для measure.vars:

tidy_toy <- melt(setDT(toy), 
                 measure.vars = list(c(4,8,12), c(5,9,13), c(6,10,14), c(7,11,15)), 
                 value.name = c('A','B','C','ID'))

Создание уникальных имен столбцов необязательно.


Более сложный метод, который создает имена, которые лучше различимы аргументом patterns:

# select the names that are not unique
tt <- table(names(toy))
idx <- which(names(toy) %in% names(tt)[tt > 1])
nms <- names(toy)[idx]

# make them unique
names(toy)[idx] <- paste(nms, 
                         rep(seq(length(nms) / length(names(tt)[tt > 1])), 
                             each = length(names(tt)[tt > 1])), 
                         sep = '.')

# your columnnames are now unique:
> names(toy)
 [1] "file_path" "Condition" "Trial.Num" "A.1"       "B.1"       "C.1"       "ID.1"      "A.2"      
 [9] "B.2"       "C.2"       "ID.2"      "A.3"       "B.3"       "C.3"       "ID.3"     

# tidy the data into long format
tidy_toy <- melt(setDT(toy), 
                 measure.vars = patterns('^A.\\d','^B.\\d','^C.\\d','^ID.\\d'), 
                 value.name = c('A','B','C','ID'))

который даст тот же конечный результат.


Как упоминалось в комментариях, пакет janitor -package может быть полезен и для этой проблемы. clean_names() работает аналогично функции make.unique. См. здесь для объяснения.