TL;DR
Я пытаюсь установить простую нейронную сеть в MNIST, и она работает для небольшой настройки отладки, но когда я переношу ее на подмножество MNIST, она работает быстрее, а градиент близок к 0 очень быстро, но затем он выводит одно и то же значение для любого заданного ввода, а конечная стоимость довольно высока. Я пытался целенаправленно переработать, чтобы убедиться, что он действительно работает, но он не будет делать этого в MNIST, предлагая глубокую проблему в настройке. Я проверил реализацию backpropagation с помощью проверки градиента и, похоже, совпадал, поэтому не уверен, где находится ошибка, или о том, над чем работать сейчас!
Большое спасибо за любую помощь, которую вы можете предложить, я изо всех сил пытался это исправить!
Объяснение
Я пытаюсь создать нейронную сеть в Numpy на основе этого объяснения: http://ufldl.stanford.edu/wiki/index.php/Neural_Networks http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
Backpropagation, похоже, соответствует проверке градиента:
Backpropagation: [ 0.01168585, 0.06629858, -0.00112408, -0.00642625, -0.01339408,
-0.07580145, 0.00285868, 0.01628148, 0.00365659, 0.0208475 ,
0.11194151, 0.16696139, 0.10999967, 0.13873069, 0.13049299,
-0.09012582, -0.1344335 , -0.08857648, -0.11168955, -0.10506167]
Gradient Checking: [-0.01168585 -0.06629858 0.00112408 0.00642625 0.01339408
0.07580145 -0.00285868 -0.01628148 -0.00365659 -0.0208475
-0.11194151 -0.16696139 -0.10999967 -0.13873069 -0.13049299
0.09012582 0.1344335 0.08857648 0.11168955 0.10506167]
И когда я тренируюсь по этой простой настройке отладки:
a is a neural net w/ 2 inputs -> 5 hidden -> 2 outputs, and learning rate 0.5
a.gradDesc(np.array([[0.1,0.9],[0.2,0.8]]),np.array([[0,1],[0,1]]))
ie. x1 = [0.1, 0.9] and y1 = [0,1]
Я получаю эти прекрасные кривые обучения
По общему признанию, это явно ошалелая, очень простая функция, чтобы соответствовать. Однако, как только я передам его в MNIST, с этой настройкой:
# Number of input, hidden and ouput nodes
# Input = 28 x 28 pixels
input_nodes=784
# Arbitrary number of hidden nodes, experiment to improve
hidden_nodes=200
# Output = one of the digits [0,1,2,3,4,5,6,7,8,9]
output_nodes=10
# Learning rate
learning_rate=0.4
# Regularisation parameter
lambd=0.0
С этой настройкой, запущенной на приведенном ниже коде, для 100 итераций он, похоже, сначала тренируется, а просто "плоские линии" довольно быстро и не достигает очень хорошей модели:
Initial ===== Cost (unregularised): 2.09203670985 /// Cost (regularised): 2.09203670985 Mean Gradient: 0.0321241229793
Iteration 100 Cost (unregularised): 0.980999805477 /// Cost (regularised): 0.980999805477 Mean Gradient: -5.29639499854e-09
TRAINED IN 26.45932364463806
Это дает очень низкую точность теста и прогнозирует тот же результат, даже если тестируется при всех входах 0,1 или 0,9. Я просто получаю одинаковый результат (хотя точно, какое число из них выводится, зависит от начальных случайных весов):
Test accuracy: 8.92
Targets 2 2 1 7 2 2 0 2 3
Hypothesis 5 5 5 5 5 5 5 5 5
Сброс кода:
# Import dependencies
import numpy as np
import time
import csv
import matplotlib.pyplot
import random
import math
# Read in training data
with open('MNIST/mnist_train_100.csv') as file:
train_data=np.array([list(map(int,line.strip().split(','))) for line in file.readlines()])
# In[197]:
# Plot a sample of training data to visualise
displayData(train_data[:,1:], 25)
# In[198]:
# Read in test data
with open('MNIST/mnist_test.csv') as file:
test_data=np.array([list(map(int,line.strip().split(','))) for line in file.readlines()])
# Main neural network class
class neuralNetwork:
# Define the architecture
def __init__(self, i, h, o, lr, lda):
# Number of nodes in each layer
self.i=i
self.h=h
self.o=o
# Learning rate
self.lr=lr
# Lambda for regularisation
self.lda=lda
# Randomly initialise the parameters, input-> hidden and hidden-> output
self.ih=np.random.normal(0.0,pow(self.h,-0.5),(self.h,self.i))
self.ho=np.random.normal(0.0,pow(self.o,-0.5),(self.o,self.h))
def predict(self, X):
# GET HYPOTHESIS ESTIMATES/ OUTPUTS
# Add bias node x(0)=1 for all training examples, X is now m x n+1
# Then compute activation to hidden node
z2=np.dot(X,self.ih.T) + 1
#print(a1.shape)
a2=sigmoid(z2)
#print(ha)
# Add bias node h(0)=1 for all training examples, H is now m x h+1
# Then compute activation to output node
z3=np.dot(a2,self.ho.T) + 1
h=sigmoid(z3)
outputs=np.argmax(h.T,axis=0)
return outputs
def backprop (self, X, y):
try:
m = X.shape[0]
except:
m=1
# GET HYPOTHESIS ESTIMATES/ OUTPUTS
# Add bias node x(0)=1 for all training examples, X is now m x n+1
# Then compute activation to hidden node
z2=np.dot(X,self.ih.T)
#print(a1.shape)
a2=sigmoid(z2)
#print(ha)
# Add bias node h(0)=1 for all training examples, H is now m x h+1
# Then compute activation to output node
z3=np.dot(a2,self.ho.T)
h=sigmoid(z3)
# Compute error/ cost for this setup (unregularised and regularise)
costReg=self.costFunc(h,y)
costUn=self.costFuncReg(h,y)
# Output error term
d3=-(y-h)*sigmoidGradient(z3)
# Hidden error term
d2=np.dot(d3,self.ho)*sigmoidGradient(z2)
# Partial derivatives for weights
D2=np.dot(d3.T,a2)
D1=np.dot(d2.T,X)
# Partial derivatives of theta with regularisation
T2Grad=(D2/m)+(self.lda/m)*(self.ho)
T1Grad=(D1/m)+(self.lda/m)*(self.ih)
# Update weights
# Hidden layer (weights 1)
self.ih-=self.lr*(((D1)/m) + (self.lda/m)*self.ih)
# Output layer (weights 2)
self.ho-=self.lr*(((D2)/m) + (self.lda/m)*self.ho)
# Unroll gradients to one long vector
grad=np.concatenate(((T1Grad).ravel(),(T2Grad).ravel()))
return costReg, costUn, grad
def backpropIter (self, X, y):
try:
m = X.shape[0]
except:
m=1
# GET HYPOTHESIS ESTIMATES/ OUTPUTS
# Add bias node x(0)=1 for all training examples, X is now m x n+1
# Then compute activation to hidden node
z2=np.dot(X,self.ih.T)
#print(a1.shape)
a2=sigmoid(z2)
#print(ha)
# Add bias node h(0)=1 for all training examples, H is now m x h+1
# Then compute activation to output node
z3=np.dot(a2,self.ho.T)
h=sigmoid(z3)
# Compute error/ cost for this setup (unregularised and regularise)
costUn=self.costFunc(h,y)
costReg=self.costFuncReg(h,y)
gradW1=np.zeros(self.ih.shape)
gradW2=np.zeros(self.ho.shape)
for i in range(m):
delta3 = -(y[i,:]-h[i,:])*sigmoidGradient(z3[i,:])
delta2 = np.dot(self.ho.T,delta3)*sigmoidGradient(z2[i,:])
gradW2= gradW2 + np.outer(delta3,a2[i,:])
gradW1 = gradW1 + np.outer(delta2,X[i,:])
# Update weights
# Hidden layer (weights 1)
#self.ih-=self.lr*(((gradW1)/m) + (self.lda/m)*self.ih)
# Output layer (weights 2)
#self.ho-=self.lr*(((gradW2)/m) + (self.lda/m)*self.ho)
# Unroll gradients to one long vector
grad=np.concatenate(((gradW1).ravel(),(gradW2).ravel()))
return costUn, costReg, grad
def gradDesc(self, X, y):
# Backpropagate to get updates
cost,costreg,grad=self.backpropIter(X,y)
# Unroll parameters
deltaW1=np.reshape(grad[0:self.h*self.i],(self.h,self.i))
deltaW2=np.reshape(grad[self.h*self.i:],(self.o,self.h))
# m = no. training examples
m=X.shape[0]
#print (self.ih)
self.ih -= self.lr * ((deltaW1))#/m) + (self.lda * self.ih))
self.ho -= self.lr * ((deltaW2))#/m) + (self.lda * self.ho))
#print(deltaW1)
#print(self.ih)
return cost,costreg,grad
# Gradient checking to compute the gradient numerically to debug backpropagation
def gradCheck(self, X, y):
# Unroll theta
theta=np.concatenate(((self.ih).ravel(),(self.ho).ravel()))
# perturb will add and subtract epsilon, numgrad will store answers
perturb=np.zeros(len(theta))
numgrad=np.zeros(len(theta))
# epsilon, e is a small number
e = 0.00001
# Loop over all theta
for i in range(len(theta)):
# Perturb is zeros with one index being e
perturb[i]=e
loss1=self.costFuncGradientCheck(theta-perturb, X, y)
loss2=self.costFuncGradientCheck(theta+perturb, X, y)
# Compute numerical gradient and update vectors
numgrad[i]=(loss1-loss2)/(2*e)
perturb[i]=0
return numgrad
def costFuncGradientCheck(self,theta,X,y):
T1=np.reshape(theta[0:self.h*self.i],(self.h,self.i))
T2=np.reshape(theta[self.h*self.i:],(self.o,self.h))
m=X.shape[0]
# GET HYPOTHESIS ESTIMATES/ OUTPUTS
# Compute activation to hidden node
z2=np.dot(X,T1.T)
a2=sigmoid(z2)
# Compute activation to output node
z3=np.dot(a2,T2.T)
h=sigmoid(z3)
cost=self.costFunc(h, y)
return cost #+ ((self.lda/2)*(np.sum(pow(T1,2)) + np.sum(pow(T2,2))))
def costFunc(self, h, y):
m=h.shape[0]
return np.sum(pow((h-y),2))/m
def costFuncReg(self, h, y):
cost=self.costFunc(h, y)
return cost #+ ((self.lda/2)*(np.sum(pow(self.ih,2)) + np.sum(pow(self.ho,2))))
# Helper functions to compute sigmoid and gradient for an input number or matrix
def sigmoid(Z):
return np.divide(1,np.add(1,np.exp(-Z)))
def sigmoidGradient(Z):
return sigmoid(Z)*(1-sigmoid(Z))
# Pre=processing helper functions
# Normalise data to 0.1-1 as 0 inputs kills the weights and changes
def scaleDataVec(data):
return (np.asfarray(data[1:]) / 255.0 * 0.99) + 0.1
def scaleData(data):
return (np.asfarray(data[:,1:]) / 255.0 * 0.99) + 0.1
# DISPLAY DATA
# plot_data will be what to plot, num_ex must be a square number of how many examples to plot, random examples will then be plotted
def displayData(plot_data, num_ex, rand=1):
if rand==0:
data=plot_data
else:
rand_indexes=random.sample(range(plot_data.shape[0]),num_ex)
data=plot_data[rand_indexes,:]
# Useful variables, m= no. train ex, n= no. features
m=data.shape[0]
n=data.shape[1]
# Shape for one example
example_width=math.ceil(math.sqrt(n))
example_height=math.ceil(n/example_width)
# No. of items to display
display_rows=math.floor(math.sqrt(m))
display_cols=math.ceil(m/display_rows)
# Padding between images
pad=1
# Setup blank display
display_array = -np.ones((pad + display_rows * (example_height + pad), (pad + display_cols * (example_width + pad))))
curr_ex=0
for i in range(1,display_rows+1):
for j in range(1,display_cols+1):
if curr_ex>m:
break
# Max value of this patch
max_val=max(abs(data[curr_ex, :]))
display_array[pad + (j-1) * (example_height + pad) : j*(example_height+1), pad + (i-1) * (example_width + pad) : i*(example_width+1)] = data[curr_ex, :].reshape(example_height, example_width)/max_val
curr_ex+=1
matplotlib.pyplot.imshow(display_array, cmap='Greys', interpolation='None')
# In[312]:
a=neuralNetwork(2,5,2,0.5,0.0)
print(a.backpropIter(np.array([[0.1,0.9],[0.2,0.8]]),np.array([[0,1],[0,1]])))
print(a.gradCheck(np.array([[0.1,0.9],[0.2,0.8]]),np.array([[0,1],[0,1]])))
D=[]
C=[]
for i in range(100):
c,b,d=a.gradDesc(np.array([[0.1,0.9],[0.2,0.8]]),np.array([[0,1],[0,1]]))
C.append(c)
D.append(np.mean(d))
#print(c)
print(a.predict(np.array([[0.1,0.9]])))
# Debugging plot
matplotlib.pyplot.figure()
matplotlib.pyplot.plot(C)
matplotlib.pyplot.ylabel("Error")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.figure()
matplotlib.pyplot.plot(D)
matplotlib.pyplot.ylabel("Gradient")
matplotlib.pyplot.xlabel("Iterations")
#print(J)
# In[313]:
# Class instance
# Number of input, hidden and ouput nodes
# Input = 28 x 28 pixels
input_nodes=784
# Arbitrary number of hidden nodes, experiment to improve
hidden_nodes=200
# Output = one of the digits [0,1,2,3,4,5,6,7,8,9]
output_nodes=10
# Learning rate
learning_rate=0.4
# Regularisation parameter
lambd=0.0
# Create instance of Nnet class
nn=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate,lambd)
# In[314]:
time1=time.time()
# Scale inputs
inputs=scaleData(train_data)
# 0.01-0.99 range as the sigmoid function can't reach 0 or 1, 0.01 for all except 0.99 for target
targets=(np.identity(output_nodes)*0.98)[train_data[:,0],:]+0.01
J=[]
JR=[]
Grad=[]
iterations=100
for i in range(iterations):
j,jr,grad=nn.gradDesc(inputs, targets)
grad=np.mean(grad)
if i == 0:
print("Initial ===== Cost (unregularised): ", j, "\t///", "Cost (regularised): ",jr," Mean Gradient: ",grad)
print("\r", end="")
print("Iteration ", i+1, "\tCost (unregularised): ", j, "\t///", "Cost (regularised): ", jr," Mean Gradient: ",grad,end="")
J.append(j)
JR.append(jr)
Grad.append(grad)
time2 = time.time()
print ("\nTRAINED IN ",time2-time1)
# In[315]:
# Debugging plot
matplotlib.pyplot.figure()
matplotlib.pyplot.plot(J)
matplotlib.pyplot.plot(JR)
matplotlib.pyplot.ylabel("Error")
matplotlib.pyplot.xlabel("Iterations")
matplotlib.pyplot.figure()
matplotlib.pyplot.plot(Grad)
matplotlib.pyplot.ylabel("Gradient")
matplotlib.pyplot.xlabel("Iterations")
#print(J)
# In[316]:
# Scale inputs
inputs=scaleData(test_data)
# 0.01-0.99 range as the sigmoid function can't reach 0 or 1, 0.01 for all except 0.99 for target
targets=test_data[:,0]
h=nn.predict(inputs)
score=[]
targ=[]
hyp=[]
for i,line in enumerate(targets):
if line == h[i]:
score.append(1)
else:
score.append(0)
hyp.append(h[i])
targ.append(line)
print("Test accuracy: ", sum(score)/len(score)*100)
indexes=random.sample(range(len(hyp)),9)
print("Targets ",end="")
for j in indexes:
print (targ[j]," ",end="")
print("\nHypothesis ",end="")
for j in indexes:
print (hyp[j]," ",end="")
displayData(test_data[indexes, 1:], 9, rand=0)
# In[277]:
nn.predict(0.9*np.ones((784,)))
Изменить 1
Предлагается использовать разные уровни обучения, но, к сожалению, все они имеют сходные результаты, вот графики для 30 итераций с использованием подмножества MNIST 100:
Конкретно, вот цифры, с которых они начинаются и заканчиваются:
Initial ===== Cost (unregularised): 4.07208963507 /// Cost (regularised): 4.07208963507 Mean Gradient: 0.0540251381858
Iteration 50 Cost (unregularised): 0.613310215166 /// Cost (regularised): 0.613310215166 Mean Gradient: -0.000133981500849Initial ===== Cost (unregularised): 5.67535252616 /// Cost (regularised): 5.67535252616 Mean Gradient: 0.0644797515914
Iteration 50 Cost (unregularised): 0.381080434935 /// Cost (regularised): 0.381080434935 Mean Gradient: 0.000427866902699Initial ===== Cost (unregularised): 3.54658422176 /// Cost (regularised): 3.54658422176 Mean Gradient: 0.0672211732868
Iteration 50 Cost (unregularised): 0.981 /// Cost (regularised): 0.981 Mean Gradient: 2.34515341943e-20Initial ===== Cost (unregularised): 4.05269658215 /// Cost (regularised): 4.05269658215 Mean Gradient: 0.0469666696193
Iteration 50 Cost (unregularised): 0.980999999999 /// Cost (regularised): 0.980999999999 Mean Gradient: -1.0582706063e-14Initial ===== Cost (unregularised): 2.40881492228 /// Cost (regularised): 2.40881492228 Mean Gradient: 0.0516056901574
Iteration 50 Cost (unregularised): 1.74539997258 /// Cost (regularised): 1.74539997258 Mean Gradient: 1.01955789614e-09Initial ===== Cost (unregularised): 2.58498876008 /// Cost (regularised): 2.58498876008 Mean Gradient: 0.0388768685257
Iteration 3 Cost (unregularised): 1.72520399313 /// Cost (regularised): 1.72520399313 Mean Gradient: 0.0134040908157
Iteration 50 Cost (unregularised): 0.981 /// Cost (regularised): 0.981 Mean Gradient: -4.49319474346e-43Initial ===== Cost (unregularised): 4.40141352357 /// Cost (regularised): 4.40141352357 Mean Gradient: 0.0689167742968
Iteration 50 Cost (unregularised): 0.981 /// Cost (regularised): 0.981 Mean Gradient: -1.01563966458e-22
Уровень обучения 0,01, довольно низкий, имеет лучший результат, но, изучая учебные курсы в этом регионе, я получал только 30-40% точности, большое улучшение на 8% или даже 0%, которое у меня было ранее, но не совсем то, что он должен достичь!
Изменить 2
Теперь я закончил и добавил функцию backpropagation, оптимизированную для матриц, а не итеративную формулу, и теперь я могу запускать ее на больших эпохах/итерациях без мучительно медленных. Таким образом, функция "backprop" класса соответствует проверке градиента (на самом деле это размер равен 1/2, но я думаю, что это проблема в проверке градиента, поэтому мы оставим, что bc не имеет значения пропорционально, и я попытался с добавлением в дивизии, чтобы решить эту проблему). С большим количеством эпох я добился гораздо большей точности, но все же есть проблема, поскольку, когда я ранее запрограммировал несколько иной стиль простой 3-слойной нейронной сети, часть книги, на том же наборе данных csvs, я получить гораздо лучший результат обучения. Вот несколько графиков и данных для больших эпох.
Выглядит неплохо, но у нас все еще есть довольно плохая точность тестового набора, и это для 2500 прогонов через набор данных, должно получиться хороший результат с гораздо меньшим!
Test accuracy: 61.150000000000006
Targets 6 9 8 2 2 2 4 3 8
Hypothesis 6 9 8 4 7 1 4 3 8
Изменить 3, какой набор данных?
Использовать train.csv и test.csv, чтобы попробовать с большим количеством данных, и не лучше, занимает больше времени, поэтому использовалось подмножество train_100 и test_10 во время отладки.
Изменить 4
Кажется, нужно что-то узнать после очень большого количества эпох (например, 14 000), поскольку весь набор данных используется в функции backprop (а не backpropiter), каждая петля фактически является эпохой и с нелепым количеством эпох на подмножестве из 100 поездов и 10 пробных образцов, точность теста неплохая. Однако с помощью этой небольшой выборки это может быть легко вызвано просто случайностью, и даже тогда только 70% процентов не будут нацелены даже на небольшой набор данных. Но это показывает, что, похоже, это обучение, я очень много пытаюсь оценить, чтобы это исключить.