Python Pandas: как превратить DataFrame с "факторами" в матрицу дизайна для линейной регрессии?

Если память обслуживает меня, в R есть тип данных, называемый фактором, который при использовании в DataFrame может быть автоматически распакован в необходимые столбцы матрицы проектирования регрессии. Например, фактор, содержащий значения True/False/Maybe, будет преобразован в:

1 0 0
0 1 0
or
0 0 1

с целью использования кода регрессии нижнего уровня. Есть ли способ добиться чего-то подобного с помощью библиотеки pandas? Я вижу, что существует некоторая поддержка регрессии внутри Pandas, но поскольку у меня есть собственные настраиваемые процедуры регрессии, мне действительно интересно построить конструктивную матрицу (массив или матрицу 2d numpy) из гетерогенных данных с поддержкой отображения назад и форт между столбцами объекта numpy и pandas DataFrame, из которого он получен.

Обновление: вот пример матрицы данных с разнородными данными, о которых я думаю (пример приведен в руководстве pandas):

>>> df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],'c' : np.random.randn(7)})
>>> df2
       a  b         c
0    one  x  0.000343
1    one  y -0.055651
2    two  y  0.249194
3  three  x -1.486462
4    two  y -0.406930
5    one  x -0.223973
6    six  x -0.189001
>>> 

Столбец "a" должен быть преобразован в 4 столбца с плавающей запятой (несмотря на то, что имеется только четыре уникальных атома), столбец "b" можно преобразовать в один столбец с плавающей точкой, а "c" 'столбец должен быть немодифицированным окончательным столбцом в матрице дизайна.

Спасибо,

SetJmp

Ответ 1

Существует новый модуль под названием patsy, который решает эту проблему. В приведенной ниже ссылке quickstart решается точно проблема, описанная выше, в парах строк кода.

Вот пример использования:

import pandas
import patsy

dataFrame = pandas.io.parsers.read_csv("salary2.txt") 
#salary2.txt is a re-formatted data set from the textbook
#Introductory Econometrics: A Modern Approach
#by Jeffrey Wooldridge
y,X = patsy.dmatrices("sl ~ 1+sx+rk+yr+dg+yd",dataFrame)
#X.design_info provides the meta data behind the X columns
print X.design_info

генерирует:

> DesignInfo(['Intercept',
>             'sx[T.male]',
>             'rk[T.associate]',
>             'rk[T.full]',
>             'dg[T.masters]',
>             'yr',
>             'yd'],
>            term_slices=OrderedDict([(Term([]), slice(0, 1, None)), (Term([EvalFactor('sx')]), slice(1, 2, None)),
> (Term([EvalFactor('rk')]), slice(2, 4, None)),
> (Term([EvalFactor('dg')]), slice(4, 5, None)),
> (Term([EvalFactor('yr')]), slice(5, 6, None)),
> (Term([EvalFactor('yd')]), slice(6, 7, None))]),
>            builder=<patsy.build.DesignMatrixBuilder at 0x10f169510>)

Ответ 2

import pandas
import numpy as np

num_rows = 7;
df2 = pandas.DataFrame(
                        {
                        'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
                        'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
                        'c' : np.random.randn(num_rows)
                        }
                      )

a_attribute_list = ['one', 'two', 'three', 'six']; #Or use list(set(df2['a'].values)), but that doesn't guarantee ordering.
b_attribute_list = ['x','y']

a_membership = [ np.reshape(np.array(df2['a'].values == elem).astype(np.float64),   (num_rows,1)) for elem in a_attribute_list ]
b_membership = [ np.reshape((df2['b'].values == elem).astype(np.float64), (num_rows,1)) for elem in b_attribute_list ]
c_column =  np.reshape(df2['c'].values, (num_rows,1))


design_matrix_a = np.hstack(tuple(a_membership))
design_matrix_b = np.hstack(tuple(b_membership))
design_matrix = np.hstack(( design_matrix_a, design_matrix_b, c_column ))

# Print out the design matrix to see that it what you want.
for row in design_matrix:
    print row

Я получаю этот вывод:

[ 1.          0.          0.          0.          1.          0.          0.36444463]
[ 1.          0.          0.          0.          0.          1.         -0.63610264]
[ 0.          1.          0.          0.          0.          1.          1.27876991]
[ 0.          0.          1.          0.          1.          0.          0.69048607]
[ 0.          1.          0.          0.          0.          1.          0.34243241]
[ 1.          0.          0.          0.          1.          0.         -1.17370649]
[ 0.          0.          0.          1.          1.          0.         -0.52271636]

Итак, первый столбец является индикатором для местоположений DataFrame, которые были "одним", второй столбец является индикатором местоположений DataFrame, которые были "двумя", и так далее. Столбцы 4 и 5 являются индикаторами местоположений DataFrame, которые были соответственно "x" и "y", а конечный столбец - это только случайные данные.

Ответ 3

Pandas 0.13.1 с 3 февраля 2014 года имеет метод:

>>> pd.Series(['one', 'one', 'two', 'three', 'two', 'one', 'six']).str.get_dummies()
   one  six  three  two
0    1    0      0    0
1    1    0      0    0
2    0    0      0    1
3    0    0      1    0
4    0    0      0    1
5    1    0      0    0
6    0    1      0    0

Ответ 4

patsy.dmatrices может во многих случаях работать хорошо. Если у вас просто есть вектор - a pandas.Series - тогда приведенный ниже код может работать, создавая вырожденную матрицу дизайна и без столбца перехвата.

def factor(series):
    """Convert a pandas.Series to pandas.DataFrame design matrix.

    Parameters
    ----------
    series : pandas.Series
        Vector with categorical values

    Returns
    -------
    pandas.DataFrame
        Design matrix with ones and zeroes.

    See Also
    --------
    patsy.dmatrices : Converts categorical columns to numerical

    Examples
    --------
    >>> import pandas as pd
    >>> design = factor(pd.Series(['a', 'b', 'a']))
    >>> design.ix[0,'[a]']
    1.0
    >>> list(design.columns)
    ['[a]', '[b]']

    """
    levels = list(set(series))
    design_matrix = np.zeros((len(series), len(levels)))
    for row_index, elem in enumerate(series):
        design_matrix[row_index, levels.index(elem)] = 1
    name = series.name or ""
    columns = map(lambda level: "%s[%s]" % (name, level), levels)
    df = pd.DataFrame(design_matrix, index=series.index, 
                      columns=columns)
    return df

Ответ 5

import pandas as pd
import numpy as np

def get_design_matrix(data_in,columns_index,ref):
    columns_index_temp =  columns_index.copy( )
    design_matrix = pd.DataFrame(np.zeros(shape = [len(data_in),len(columns_index)-1]))
    columns_index_temp.remove(ref)
    design_matrix.columns = columns_index_temp
    for ii in columns_index_temp:
        loci = list(map(lambda x:x == ii,data_in))
        design_matrix.loc[loci,ii] = 1
    return(design_matrix)

get_design_matrix(data_in = ['one','two','three','six','one','two'],
                  columns_index = ['one','two','three','six'],
                  ref = 'one')


Out[3]: 
   two  three  six
0  0.0    0.0  0.0
1  1.0    0.0  0.0
2  0.0    1.0  0.0
3  0.0    0.0  1.0
4  0.0    0.0  0.0
5  1.0    0.0  0.0