Как я могу предотвратить создание GC-кода при копировании на запись, когда я перепрограммирую свой процесс? Я недавно анализировал поведение сборщика мусора в Ruby из-за некоторых проблем с памятью, с которыми я столкнулся в своей программе (у меня закончилась нехватка памяти на моем 60-битном процессоре 0,5 Тбайта даже для довольно небольших задач). Для меня это действительно ограничивает полезность ruby для запуска программ на многоядерных серверах. Я хотел бы представить здесь свои эксперименты и результаты.
Проблема возникает, когда сборщик мусора работает во время разветвления. Я исследовал три случая, которые иллюстрируют проблему.
Случай 1: Мы выделяем много объектов (строки длиной не более 20 байтов) в памяти с использованием массива. Строки создаются с использованием случайного числа и форматирования строк. Когда процесс вилки и мы вынуждаем GC работать в дочернем, вся разделяемая память становится частной, что приводит к дублированию исходной памяти.
Случай 2: Мы выделяем много объектов (строк) в памяти с помощью массива, но строка создается с помощью функции rand.to_s, поэтому мы удаляем форматирование данных по сравнению с предыдущим случаем. В итоге мы используем меньший объем используемой памяти, предположительно из-за меньшего количества мусора. Когда процесс вилки и мы вынуждаем GC работать в дочернем элементе, только часть памяти становится частной. У нас есть дублирование исходной памяти, но в меньшей степени.
Случай 3: Мы выделяем меньше объектов по сравнению с ранее, но объекты больше, так что объем выделенной памяти остается таким же, как и в предыдущих случаях. Когда процесс вилки и мы вынуждаем GC работать в ребёнке, вся память остается разделенной, т.е. Дублирование памяти.
Здесь я вставляю код Ruby, который использовался для этих экспериментов. Для переключения между случаями вам нужно только изменить значение "option" в функции memory_object. Код был протестирован с использованием Ruby 2.2.2, 2.2.1, 2.1.3, 2.1.5 и 1.9.3 на машине Ubuntu 14.04.
Пример вывода для случая 1:
ruby version 2.2.2
proces pid log priv_dirty shared_dirty
Parent 3897 post alloc 38 0
Parent 3897 4 fork 0 37
Child 3937 4 initial 0 37
Child 3937 8 empty GC 35 5
Точный же код был написан на Python, и во всех случаях CoW работает отлично.
Пример вывода для случая 1:
python version 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2]
proces pid log priv_dirty shared_dirty
Parent 4308 post alloc 35 0
Parent 4308 4 fork 0 35
Child 4309 4 initial 0 35
Child 4309 10 empty GC 1 34
Код Ruby
$start_time=Time.new
# Monitor use of Resident and Virtual memory.
class Memory
shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
priv_dirty = '.+?Private_Dirty:\s+(\d+)'
MEM_REGEXP = /#{shared_dirty}#{priv_dirty}/m
# get memory usage
def self.get_memory_map( pids)
memory_map = {}
memory_map[ :pids_found] = {}
memory_map[ :shared_dirty] = 0
memory_map[ :priv_dirty] = 0
pids.each do |pid|
begin
lines = nil
lines = File.read( "/proc/#{pid}/smaps")
rescue
lines = nil
end
if lines
lines.scan(MEM_REGEXP) do |shared_dirty, priv_dirty|
memory_map[ :pids_found][pid] = true
memory_map[ :shared_dirty] += shared_dirty.to_i
memory_map[ :priv_dirty] += priv_dirty.to_i
end
end
end
memory_map[ :pids_found] = memory_map[ :pids_found].keys
return memory_map
end
# get the processes and get the value of the memory usage
def self.memory_usage( )
pids = [ $$]
result = self.get_memory_map( pids)
result[ :pids] = pids
return result
end
# print the values of the private and shared memories
def self.log( process_name='', log_tag="")
if process_name == "header"
puts " %-6s %5s %-12s %10s %10s\n" % ["proces", "pid", "log", "priv_dirty", "shared_dirty"]
else
time = Time.new - $start_time
mem = Memory.memory_usage( )
puts " %-6s %5d %-12s %10d %10d\n" % [process_name, $$, log_tag, mem[:priv_dirty]/1000, mem[:shared_dirty]/1000]
end
end
end
# function to delay the processes a bit
def time_step( n)
while Time.new - $start_time < n
sleep( 0.01)
end
end
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=1)
result = []
count = size/20
if option > 3 or option < 1
count.times do
result << "%20.18f" % rand
end
elsif option == 1
count.times do
result << rand.to_s
end
elsif option == 2
count = count/10
count.times do
result << ("%20.18f" % rand)*30
end
end
return result
end
##### main #####
puts "ruby version #{RUBY_VERSION}"
GC.disable
# print the column headers and first line
Memory.log( "header")
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10)
Memory.log( "Parent", "post alloc")
lab_time = Time.new - $start_time
if lab_time < 3.9
lab_time = 0
end
# start the forking
pid = fork do
time = 4
time_step( time + lab_time)
Memory.log( "Child", "#{time} initial")
# force GC when nothing happened
GC.enable; GC.start; GC.disable
time = 8
time_step( time + lab_time)
Memory.log( "Child", "#{time} empty GC")
sleep( 1)
STDOUT.flush
exit!
end
time = 4
time_step( time + lab_time)
Memory.log( "Parent", "#{time} fork")
# wait for the child to finish
Process.wait( pid)
Код Python
import re
import time
import os
import random
import sys
import gc
start_time=time.time()
# Monitor use of Resident and Virtual memory.
class Memory:
def __init__(self):
self.shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
self.priv_dirty = '.+?Private_Dirty:\s+(\d+)'
self.MEM_REGEXP = re.compile("{shared_dirty}{priv_dirty}".format(shared_dirty=self.shared_dirty, priv_dirty=self.priv_dirty), re.DOTALL)
# get memory usage
def get_memory_map(self, pids):
memory_map = {}
memory_map[ "pids_found" ] = {}
memory_map[ "shared_dirty" ] = 0
memory_map[ "priv_dirty" ] = 0
for pid in pids:
try:
lines = None
with open( "/proc/{pid}/smaps".format(pid=pid), "r" ) as infile:
lines = infile.read()
except:
lines = None
if lines:
for shared_dirty, priv_dirty in re.findall( self.MEM_REGEXP, lines ):
memory_map[ "pids_found" ][pid] = True
memory_map[ "shared_dirty" ] += int( shared_dirty )
memory_map[ "priv_dirty" ] += int( priv_dirty )
memory_map[ "pids_found" ] = memory_map[ "pids_found" ].keys()
return memory_map
# get the processes and get the value of the memory usage
def memory_usage( self):
pids = [ os.getpid() ]
result = self.get_memory_map( pids)
result[ "pids" ] = pids
return result
# print the values of the private and shared memories
def log( self, process_name='', log_tag=""):
if process_name == "header":
print " %-6s %5s %-12s %10s %10s" % ("proces", "pid", "log", "priv_dirty", "shared_dirty")
else:
global start_time
Time = time.time() - start_time
mem = self.memory_usage( )
print " %-6s %5d %-12s %10d %10d" % (process_name, os.getpid(), log_tag, mem["priv_dirty"]/1000, mem["shared_dirty"]/1000)
# function to delay the processes a bit
def time_step( n):
global start_time
while (time.time() - start_time) < n:
time.sleep( 0.01)
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=2):
count = size/20
if option > 3 or option < 1:
result = [ "%20.18f"% random.random() for i in xrange(count) ]
elif option == 1:
result = [ str( random.random() ) for i in xrange(count) ]
elif option == 2:
count = count/10
result = [ ("%20.18f"% random.random())*30 for i in xrange(count) ]
return result
##### main #####
print "python version {version}".format(version=sys.version)
memory = Memory()
gc.disable()
# print the column headers and first line
memory.log( "header") # Print the headers of the columns
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10) # Allocate memory
memory.log( "Parent", "post alloc")
lab_time = time.time() - start_time
if lab_time < 3.9:
lab_time = 0
# start the forking
pid = os.fork() # fork the process
if pid == 0:
Time = 4
time_step( Time + lab_time)
memory.log( "Child", "{time} initial".format(time=Time))
# force GC when nothing happened
gc.enable(); gc.collect(); gc.disable();
Time = 10
time_step( Time + lab_time)
memory.log( "Child", "{time} empty GC".format(time=Time))
time.sleep( 1)
sys.exit(0)
Time = 4
time_step( Time + lab_time)
memory.log( "Parent", "{time} fork".format(time=Time))
# Wait for child process to finish
os.waitpid( pid, 0)
ИЗМЕНИТЬ
Действительно, вызывая GC несколько раз, прежде чем разветвлять процесс, решает проблему, и я очень удивлен. Я также запускаю код с помощью Ruby 2.0.0, и проблема даже не появляется, поэтому она должна быть связана с GC этого поколения, как вы упомянули. Однако, если я вызываю функцию memory_object без назначения вывода любым переменным (я только создаю мусор), тогда память дублируется. Объем памяти, который копируется, зависит от количества мусора, который я создаю - чем больше мусора, тем больше памяти становится приватным.
Любые идеи, как я могу это предотвратить?
Вот некоторые результаты
Запуск GC в 2.0.0
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3664 post alloc 67 0
Parent 3664 4 fork 1 69
Child 3700 4 initial 1 69
Child 3700 8 empty GC 6 65
Вызов memory_object (1000 * 1000) в дочернем
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3703 post alloc 67 0
Parent 3703 4 fork 1 70
Child 3739 4 initial 1 70
Child 3739 8 empty GC 15 56
Вызов memory_object (1000 * 1000 * 10)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3743 post alloc 67 0
Parent 3743 4 fork 1 69
Child 3779 4 initial 1 69
Child 3779 8 empty GC 89 5