Извлечение текста OpenCV

Я пытаюсь найти ограничивающие поля текста в изображении и в настоящее время использую этот подход:

// calculate the local variances of the grayscale image
Mat t_mean, t_mean_2;
Mat grayF;
outImg_gray.convertTo(grayF, CV_32F);
int winSize = 35;
blur(grayF, t_mean, cv::Size(winSize,winSize));
blur(grayF.mul(grayF), t_mean_2, cv::Size(winSize,winSize));
Mat varMat = t_mean_2 - t_mean.mul(t_mean);
varMat.convertTo(varMat, CV_8U);

// threshold the high variance regions
Mat varMatRegions = varMat > 100;

При задании такого изображения:

enter image description here

Тогда, когда я показываю varMatRegions, я получаю это изображение:

enter image description here

Как вы можете видеть, он несколько сочетает левый блок текста с заголовком карты, для большинства карт этот метод отлично работает, но на более загруженных карточках это может вызвать проблемы.

Причина, по которой плохо контактировать, заключается в том, что она ограничивает рамку контура почти всей картой.

Может ли кто-нибудь предложить другой способ, я могу найти текст, чтобы обеспечить правильное обнаружение текста?

200 баллов тому, кто может найти текст на карте выше этих двух.

enter image description hereenter image description here

Ответ 1

Вы можете обнаружить текст, найдя тесные элементы (вдохновленные LPD):

#include "opencv2/opencv.hpp"

std::vector<cv::Rect> detectLetters(cv::Mat img)
{
    std::vector<cv::Rect> boundRect;
    cv::Mat img_gray, img_sobel, img_threshold, element;
    cvtColor(img, img_gray, CV_BGR2GRAY);
    cv::Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
    cv::threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU+CV_THRESH_BINARY);
    element = getStructuringElement(cv::MORPH_RECT, cv::Size(17, 3) );
    cv::morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element); //Does the trick
    std::vector< std::vector< cv::Point> > contours;
    cv::findContours(img_threshold, contours, 0, 1); 
    std::vector<std::vector<cv::Point> > contours_poly( contours.size() );
    for( int i = 0; i < contours.size(); i++ )
        if (contours[i].size()>100)
        { 
            cv::approxPolyDP( cv::Mat(contours[i]), contours_poly[i], 3, true );
            cv::Rect appRect( boundingRect( cv::Mat(contours_poly[i]) ));
            if (appRect.width>appRect.height) 
                boundRect.push_back(appRect);
        }
    return boundRect;
}

Использование:

int main(int argc,char** argv)
{
    //Read
    cv::Mat img1=cv::imread("side_1.jpg");
    cv::Mat img2=cv::imread("side_2.jpg");
    //Detect
    std::vector<cv::Rect> letterBBoxes1=detectLetters(img1);
    std::vector<cv::Rect> letterBBoxes2=detectLetters(img2);
    //Display
    for(int i=0; i< letterBBoxes1.size(); i++)
        cv::rectangle(img1,letterBBoxes1[i],cv::Scalar(0,255,0),3,8,0);
    cv::imwrite( "imgOut1.jpg", img1);  
    for(int i=0; i< letterBBoxes2.size(); i++)
        cv::rectangle(img2,letterBBoxes2[i],cv::Scalar(0,255,0),3,8,0);
    cv::imwrite( "imgOut2.jpg", img2);  
    return 0;
}

Результаты:

а. element = getStructuringElement (cv:: MORPH_RECT, cv:: Size (17, 3)); imgOut1imgOut2

б. element = getStructuringElement (cv:: MORPH_RECT, cv:: Размер (30, 30)); imgOut1imgOut2

Результаты аналогичны для упомянутого другого изображения.

Ответ 2

Я использовал метод на основе градиента в программе ниже. Добавлены получившиеся изображения. Обратите внимание, что я использую уменьшенную версию изображения для обработки.

c++ версия

The MIT License (MIT)

Copyright (c) 2014 Dhanushka Dangampola

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

#include "stdafx.h"

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

#define INPUT_FILE              "1.jpg"
#define OUTPUT_FOLDER_PATH      string("")

int _tmain(int argc, _TCHAR* argv[])
{
    Mat large = imread(INPUT_FILE);
    Mat rgb;
    // downsample and use it for processing
    pyrDown(large, rgb);
    Mat small;
    cvtColor(rgb, small, CV_BGR2GRAY);
    // morphological gradient
    Mat grad;
    Mat morphKernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
    morphologyEx(small, grad, MORPH_GRADIENT, morphKernel);
    // binarize
    Mat bw;
    threshold(grad, bw, 0.0, 255.0, THRESH_BINARY | THRESH_OTSU);
    // connect horizontally oriented regions
    Mat connected;
    morphKernel = getStructuringElement(MORPH_RECT, Size(9, 1));
    morphologyEx(bw, connected, MORPH_CLOSE, morphKernel);
    // find contours
    Mat mask = Mat::zeros(bw.size(), CV_8UC1);
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    findContours(connected, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
    // filter contours
    for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
    {
        Rect rect = boundingRect(contours[idx]);
        Mat maskROI(mask, rect);
        maskROI = Scalar(0, 0, 0);
        // fill the contour
        drawContours(mask, contours, idx, Scalar(255, 255, 255), CV_FILLED);
        // ratio of non-zero pixels in the filled region
        double r = (double)countNonZero(maskROI)/(rect.width*rect.height);

        if (r > .45 /* assume at least 45% of the area is filled if it contains text */
            && 
            (rect.height > 8 && rect.width > 8) /* constraints on region size */
            /* these two conditions alone are not very robust. better to use something 
            like the number of significant peaks in a horizontal projection as a third condition */
            )
        {
            rectangle(rgb, rect, Scalar(0, 255, 0), 2);
        }
    }
    imwrite(OUTPUT_FOLDER_PATH + string("rgb.jpg"), rgb);

    return 0;
}

версия на питоне

The MIT License (MIT)

Copyright (c) 2017 Dhanushka Dangampola

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

import cv2
import numpy as np

large = cv2.imread('1.jpg')
rgb = cv2.pyrDown(large)
small = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
grad = cv2.morphologyEx(small, cv2.MORPH_GRADIENT, kernel)

_, bw = cv2.threshold(grad, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
connected = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, kernel)
# using RETR_EXTERNAL instead of RETR_CCOMP
contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#For opencv 3+ comment the previous line and uncomment the following line
#_, contours, hierarchy = cv2.findContours(connected.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

mask = np.zeros(bw.shape, dtype=np.uint8)

for idx in range(len(contours)):
    x, y, w, h = cv2.boundingRect(contours[idx])
    mask[y:y+h, x:x+w] = 0
    cv2.drawContours(mask, contours, idx, (255, 255, 255), -1)
    r = float(cv2.countNonZero(mask[y:y+h, x:x+w])) / (w * h)

    if r > 0.45 and w > 8 and h > 8:
        cv2.rectangle(rgb, (x, y), (x+w-1, y+h-1), (0, 255, 0), 2)

cv2.imshow('rects', rgb)

enter image description hereenter image description hereenter image description here

Ответ 3

Вот альтернативный подход, который я использовал для обнаружения текстовых блоков:

  • Преобразование изображения в оттенки серого
  • Применяется threshold (простой двоичный порог, при котором значение в качестве порогового значения составляет 150)
  • Применяется dilation для сгущения линий на изображении, что приводит к более компактным объектам и меньшим фрагментам пробела. Используется большое значение для количества итераций, поэтому дилатация очень тяжелая (13 итераций, а также выбраны для достижения оптимальных результатов).
  • Определенные контуры объектов в приведенном изображении с использованием opencv findContours.
  • Нарисовать ограничивающий прямоугольник (прямоугольник), описывающий каждый контурный объект - каждый из них создает блок текста.
  • Необязательно отбрасываемые области, которые вряд ли будут объектом, который вы ищете (например, текстовые блоки), учитывая их размер, поскольку вышеприведенный алгоритм также может найти пересекающиеся или вложенные объекты (например, всю верхнюю область для первой карты), некоторые из который может быть неинтересным для ваших целей.

Ниже приведен код, написанный на питоне с pyopencv, его легко переносить на С++.

import cv2

image = cv2.imread("card.png")
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # grayscale
_,thresh = cv2.threshold(gray,150,255,cv2.THRESH_BINARY_INV) # threshold
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
dilated = cv2.dilate(thresh,kernel,iterations = 13) # dilate
_, contours, hierarchy = cv2.findContours(dilated,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) # get contours

# for each contour found, draw a rectangle around it on original image
for contour in contours:
    # get rectangle bounding contour
    [x,y,w,h] = cv2.boundingRect(contour)

    # discard areas that are too large
    if h>300 and w>300:
        continue

    # discard areas that are too small
    if h<40 or w<40:
        continue

    # draw rectangle around contour on original image
    cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,255),2)

# write original image with added contours to disk  
cv2.imwrite("contoured.jpg", image) 

Исходное изображение - это первое изображение в вашем сообщении.

После предварительной обработки (оттенки серого, порог и расширение - так после шага 3) изображение выглядело так:

Dilated image

Ниже приведено изображение ( "contoured.jpg" в последней строке); конечные ограничивающие поля для объектов на изображении выглядят следующим образом:

enter image description here

Вы можете видеть, что текстовый блок слева определяется как отдельный блок, ограниченный его окружением.

Используя тот же script с теми же параметрами (за исключением типа порога, который был изменен для второго изображения, как описано ниже), вот результаты для двух других карт:

enter image description here

enter image description here

Настройка параметров

Параметры (пороговое значение, параметры дилатации) были оптимизированы для этого изображения и этой задачи (поиск текстовых блоков) и могут быть скорректированы, если необходимо, для других изображений карт или других типов объектов, которые будут найдены.

Для порогового значения (шаг 2) я использовал черный порог. Для изображений, где текст светлее фона, например, второе изображение в вашем посте, должен использоваться белый порог, поэтому замените тип хранения cv2.THRESH_BINARY). Для второго изображения я также использовал немного более высокое значение для порога (180). Изменение параметров для порогового значения и количества итераций для дилатации приведет к разной степени чувствительности при разграничении объектов на изображении.

Поиск других типов объектов:

Например, уменьшение дилатации на 5 итераций в первом изображении дает нам более точное разделение объектов на изображении, грубо нахождение всех слов на изображении (а не текстовых блоков):

enter image description here

Зная грубый размер слова, я отбросил области, которые были слишком маленькими (шириной или высотой ниже 20 пикселей) или слишком большими (более 100 пикселей ширины или высоты), чтобы игнорировать объекты, которые вряд ли будут словами, чтобы получить результаты в приведенном выше изображении.

Ответ 4

Подход @dhanushka показал самое обещание, но я хотел поиграть в Python, поэтому пошел вперед и перевел его для удовольствия:

import cv2
import numpy as np
from cv2 import boundingRect, countNonZero, cvtColor, drawContours, findContours, getStructuringElement, imread, morphologyEx, pyrDown, rectangle, threshold

large = imread(image_path)
# downsample and use it for processing
rgb = pyrDown(large)
# apply grayscale
small = cvtColor(rgb, cv2.COLOR_BGR2GRAY)
# morphological gradient
morph_kernel = getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
grad = morphologyEx(small, cv2.MORPH_GRADIENT, morph_kernel)
# binarize
_, bw = threshold(src=grad, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
morph_kernel = getStructuringElement(cv2.MORPH_RECT, (9, 1))
# connect horizontally oriented regions
connected = morphologyEx(bw, cv2.MORPH_CLOSE, morph_kernel)
mask = np.zeros(bw.shape, np.uint8)
# find contours
im2, contours, hierarchy = findContours(connected, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# filter contours
for idx in range(0, len(hierarchy[0])):
    rect = x, y, rect_width, rect_height = boundingRect(contours[idx])
    # fill the contour
    mask = drawContours(mask, contours, idx, (255, 255, 2555), cv2.FILLED)
    # ratio of non-zero pixels in the filled region
    r = float(countNonZero(mask)) / (rect_width * rect_height)
    if r > 0.45 and rect_height > 8 and rect_width > 8:
        rgb = rectangle(rgb, (x, y+rect_height), (x+rect_width, y), (0,255,0),3)

Теперь, чтобы отобразить изображение:

from PIL import Image
Image.fromarray(rgb).show()

Не самый Pythonic скриптов, но я старался как можно ближе подобрать оригинальный код на С++ для читателей.

Он работает почти так же, как и оригинал. Я буду рад прочитать предложения о том, как его можно улучшить/зафиксировать, чтобы полностью походить на исходные результаты.

введите описание изображения здесь

введите описание изображения здесь

введите описание изображения здесь

Ответ 5

Вы можете попробовать этот метод, который разработан Chucai Yi и Yingli Tian.

Они также используют программное обеспечение (которое основано на Opencv-1.0 и оно должно работать под платформой Windows.), которое вы можете использовать (хотя исходный код не доступен). Он будет генерировать все текстовые ограничивающие прямоугольники (показаны в цветовых тенях) на изображении. Обращаясь к образцам, вы получите следующие результаты:

Примечание. Чтобы сделать результат более надежным, вы можете объединить соседние поля вместе.

HBnqK.pngExRBy.jpgza10Q.jpg


Обновление: Если ваша конечная цель - распознать тексты на изображении, вы можете дополнительно проверить gttext, который представляет собой бесплатное программное обеспечение OCR и инструмент Ground Truthing для цветных изображений с текстом. Исходный код также доступен.

При этом вы можете получить распознанные тексты, например:

VfDfJ.pngK8wrq.png7h4SJ.jpg9tZdn.png8ipeJ.jpgcsb3p.png

Ответ 6

Выше кода JAVA-версия: Спасибо @William

public static List<Rect> detectLetters(Mat img){    
    List<Rect> boundRect=new ArrayList<>();

    Mat img_gray =new Mat(), img_sobel=new Mat(), img_threshold=new Mat(), element=new Mat();
    Imgproc.cvtColor(img, img_gray, Imgproc.COLOR_RGB2GRAY);
    Imgproc.Sobel(img_gray, img_sobel, CvType.CV_8U, 1, 0, 3, 1, 0, Core.BORDER_DEFAULT);
    //at src, Mat dst, double thresh, double maxval, int type
    Imgproc.threshold(img_sobel, img_threshold, 0, 255, 8);
    element=Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(15,5));
    Imgproc.morphologyEx(img_threshold, img_threshold, Imgproc.MORPH_CLOSE, element);
    List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
    Mat hierarchy = new Mat();
    Imgproc.findContours(img_threshold, contours,hierarchy, 0, 1);

    List<MatOfPoint> contours_poly = new ArrayList<MatOfPoint>(contours.size());

     for( int i = 0; i < contours.size(); i++ ){             

         MatOfPoint2f  mMOP2f1=new MatOfPoint2f();
         MatOfPoint2f  mMOP2f2=new MatOfPoint2f();

         contours.get(i).convertTo(mMOP2f1, CvType.CV_32FC2);
         Imgproc.approxPolyDP(mMOP2f1, mMOP2f2, 2, true); 
         mMOP2f2.convertTo(contours.get(i), CvType.CV_32S);


            Rect appRect = Imgproc.boundingRect(contours.get(i));
            if (appRect.width>appRect.height) {
                boundRect.add(appRect);
            }
     }

    return boundRect;
}

И используйте этот код на практике:

        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        Mat img1=Imgcodecs.imread("abc.png");
        List<Rect> letterBBoxes1=Utils.detectLetters(img1);

        for(int i=0; i< letterBBoxes1.size(); i++)
            Imgproc.rectangle(img1,letterBBoxes1.get(i).br(), letterBBoxes1.get(i).tl(),new Scalar(0,255,0),3,8,0);         
        Imgcodecs.imwrite("abc1.png", img1);

Ответ 7

Реализация Python для решения @dhanushka:

def process_rgb(rgb):
    hasText = False
    gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
    morphKernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
    grad = cv2.morphologyEx(gray, cv2.MORPH_GRADIENT, morphKernel)
    # binarize
    _, bw = cv2.threshold(grad, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    # connect horizontally oriented regions
    morphKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
    connected = cv2.morphologyEx(bw, cv2.MORPH_CLOSE, morphKernel)
    # find contours
    mask = np.zeros(bw.shape[:2], dtype="uint8")
    _,contours, hierarchy = cv2.findContours(connected, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
    # filter contours
    idx = 0
    while idx >= 0:
        x,y,w,h = cv2.boundingRect(contours[idx])
        # fill the contour
        cv2.drawContours(mask, contours, idx, (255, 255, 255), cv2.FILLED)
        # ratio of non-zero pixels in the filled region
        r = cv2.contourArea(contours[idx])/(w*h)
        if(r > 0.45 and h > 5 and w > 5 and w > h):
            cv2.rectangle(rgb, (x,y), (x+w,y+h), (0, 255, 0), 2)
            hasText = True
        idx = hierarchy[0][idx][0]
    return hasText, rgb

Ответ 8

Это С# версия ответа от dhanushka с использованием OpenCVSharp

        Mat large = new Mat(INPUT_FILE);
        Mat rgb = new Mat(), small = new Mat(), grad = new Mat(), bw = new Mat(), connected = new Mat();

        // downsample and use it for processing
        Cv2.PyrDown(large, rgb);
        Cv2.CvtColor(rgb, small, ColorConversionCodes.BGR2GRAY);

        // morphological gradient
        var morphKernel = Cv2.GetStructuringElement(MorphShapes.Ellipse, new OpenCvSharp.Size(3, 3));
        Cv2.MorphologyEx(small, grad, MorphTypes.Gradient, morphKernel);

        // binarize
        Cv2.Threshold(grad, bw, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);

        // connect horizontally oriented regions
        morphKernel = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(9, 1));
        Cv2.MorphologyEx(bw, connected, MorphTypes.Close, morphKernel);

        // find contours
        var mask = new Mat(Mat.Zeros(bw.Size(), MatType.CV_8UC1));
        Cv2.FindContours(connected, out OpenCvSharp.Point[][] contours, out HierarchyIndex[] hierarchy, RetrievalModes.CComp, ContourApproximationModes.ApproxSimple, new OpenCvSharp.Point(0, 0));

        // filter contours
        var idx = 0;
        foreach (var hierarchyItem in hierarchy)
        {
            OpenCvSharp.Rect rect = Cv2.BoundingRect(contours[idx]);
            var maskROI = new Mat(mask, rect);
            maskROI.SetTo(new Scalar(0, 0, 0));

            // fill the contour
            Cv2.DrawContours(mask, contours, idx, Scalar.White, -1);

            // ratio of non-zero pixels in the filled region
            double r = (double)Cv2.CountNonZero(maskROI) / (rect.Width * rect.Height);
            if (r > .45 /* assume at least 45% of the area is filled if it contains text */
                 &&
            (rect.Height > 8 && rect.Width > 8) /* constraints on region size */
            /* these two conditions alone are not very robust. better to use something 
            like the number of significant peaks in a horizontal projection as a third condition */
            )
            {
                Cv2.Rectangle(rgb, rect, new Scalar(0, 255, 0), 2);
            }
        }

        rgb.SaveImage(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "rgb.jpg"));

Ответ 9

это версия ответа от dhanushka на VB.NET с использованием EmguCV.

Несколько функций и структур в EmguCV требуют иного рассмотрения, чем версия С# с OpenCVSharp

Imports Emgu.CV
Imports Emgu.CV.Structure
Imports Emgu.CV.CvEnum
Imports Emgu.CV.Util

        Dim input_file As String = "C:\your_input_image.png"
        Dim large As Mat = New Mat(input_file)
        Dim rgb As New Mat
        Dim small As New Mat
        Dim grad As New Mat
        Dim bw As New Mat
        Dim connected As New Mat
        Dim morphanchor As New Point(0, 0)

        '//downsample and use it for processing
        CvInvoke.PyrDown(large, rgb)
        CvInvoke.CvtColor(rgb, small, ColorConversion.Bgr2Gray)

        '//morphological gradient
        Dim morphKernel As Mat = CvInvoke.GetStructuringElement(ElementShape.Ellipse, New Size(3, 3), morphanchor)
        CvInvoke.MorphologyEx(small, grad, MorphOp.Gradient, morphKernel, New Point(0, 0), 1, BorderType.Isolated, New MCvScalar(0))

        '// binarize
        CvInvoke.Threshold(grad, bw, 0, 255, ThresholdType.Binary Or ThresholdType.Otsu)

        '// connect horizontally oriented regions
        morphKernel = CvInvoke.GetStructuringElement(ElementShape.Rectangle, New Size(9, 1), morphanchor)
        CvInvoke.MorphologyEx(bw, connected, MorphOp.Close, morphKernel, morphanchor, 1, BorderType.Isolated, New MCvScalar(0))

        '// find contours
        Dim mask As Mat = Mat.Zeros(bw.Size.Height, bw.Size.Width, DepthType.Cv8U, 1)  '' MatType.CV_8UC1
        Dim contours As New VectorOfVectorOfPoint
        Dim hierarchy As New Mat

        CvInvoke.FindContours(connected, contours, hierarchy, RetrType.Ccomp, ChainApproxMethod.ChainApproxSimple, Nothing)

        '// filter contours
        Dim idx As Integer
        Dim rect As Rectangle
        Dim maskROI As Mat
        Dim r As Double
        For Each hierarchyItem In hierarchy.GetData
            rect = CvInvoke.BoundingRectangle(contours(idx))
            maskROI = New Mat(mask, rect)
            maskROI.SetTo(New MCvScalar(0, 0, 0))

            '// fill the contour
            CvInvoke.DrawContours(mask, contours, idx, New MCvScalar(255), -1)

            '// ratio of non-zero pixels in the filled region
            r = CvInvoke.CountNonZero(maskROI) / (rect.Width * rect.Height)

            '/* assume at least 45% of the area Is filled if it contains text */
            '/* constraints on region size */
            '/* these two conditions alone are Not very robust. better to use something 
            'Like the number of significant peaks in a horizontal projection as a third condition */
            If r > 0.45 AndAlso rect.Height > 8 AndAlso rect.Width > 8 Then
                'draw green rectangle
                CvInvoke.Rectangle(rgb, rect, New MCvScalar(0, 255, 0), 2)
            End If
            idx += 1
        Next
        rgb.Save(IO.Path.Combine(Application.StartupPath, "rgb.jpg"))