У меня есть Pandas DataFrame с столбцом date
(например: 2013-04-01
) dtype datetime.date
. Когда я включаю этот столбец в X_train
и пытаюсь подобрать модель регрессии, я получаю float() argument must be a string or a number
error float() argument must be a string or a number
. Удаление столбца date
предотвратило эту ошибку.
Каков правильный способ учета date
в модели регрессии?
Код
data = sql.read_frame(...)
X_train = data.drop('y', axis=1)
y_train = data.y
rf = RandomForestRegressor().fit(X_train, y_train)
ошибка
TypeError Traceback (most recent call last)
<ipython-input-35-8bf6fc450402> in <module>()
----> 2 rf = RandomForestRegressor().fit(X_train, y_train)
C:\Python27\lib\site-packages\sklearn\ensemble\forest.pyc in fit(self, X, y, sample_weight)
292 X.ndim != 2 or
293 not X.flags.fortran):
--> 294 X = array2d(X, dtype=DTYPE, order="F")
295
296 n_samples, self.n_features_ = X.shape
C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in array2d(X, dtype, order, copy)
78 raise TypeError('A sparse matrix was passed, but dense data '
79 'is required. Use X.toarray() to convert to dense.')
---> 80 X_2d = np.asarray(np.atleast_2d(X), dtype=dtype, order=order)
81 _assert_all_finite(X_2d)
82 if X is X_2d and copy:
C:\Python27\lib\site-packages\numpy\core\numeric.pyc in asarray(a, dtype, order)
318
319 """
--> 320 return array(a, dtype, copy=False, order=order)
321
322 def asanyarray(a, dtype=None, order=None):
TypeError: float() argument must be a string or a number