Python Pandas Группировка по дате с использованием данных datetime

У меня есть столбец Date_Time, который я хочу группировать по дате без создания нового столбца. Возможно ли, что текущий код, который у меня есть, не работает.

df = pd.groupby(df,by=[df['Date_Time'].date()])

Ответ 1

resample

df.resample('D', on='Date_Time').mean()

              B
Date_Time      
2001-10-01  4.5
2001-10-02  6.0

Grouper

По предложению @JosephCottam

df.set_index('Date_Time').groupby(pd.Grouper(freq='D')).mean()

              B
Date_Time      
2001-10-01  4.5
2001-10-02  6.0

Устаревшее использование TimeGrouper

Вы можете установить индекс на 'Date_Time' и использовать pd.TimeGrouper

df.set_index('Date_Time').groupby(pd.TimeGrouper('D')).mean().dropna()

              B
Date_Time      
2001-10-01  4.5
2001-10-02  6.0

Ответ 2

Вы можете использовать groupby по датам столбца Date_Time по dt.date:

df = df.groupby([df['Date_Time'].dt.date]).mean()

Пример:

df = pd.DataFrame({'Date_Time': pd.date_range('10/1/2001 10:00:00', periods=3, freq='10H'),
                   'B':[4,5,6]})

print (df)
   B           Date_Time
0  4 2001-10-01 10:00:00
1  5 2001-10-01 20:00:00
2  6 2001-10-02 06:00:00

print (df['Date_Time'].dt.date)
0    2001-10-01
1    2001-10-01
2    2001-10-02
Name: Date_Time, dtype: object

df = df.groupby([df['Date_Time'].dt.date])['B'].mean()
print(df)
Date_Time
2001-10-01    4.5
2001-10-02    6.0
Name: B, dtype: float64

Другое решение с resample:

df = df.set_index('Date_Time').resample('D')['B'].mean()

print(df)
Date_Time
2001-10-01    4.5
2001-10-02    6.0
Freq: D, Name: B, dtype: float64