Формат кодирования/сериализации двоичных полей в проприетарном файле XML (файл Roche LC480.ixo)

Недавно я получил пример файла экспорта, созданного инструментом Roche LightCycler 480. Он использует проприетарный формат XML, для которого я еще не нашел спецификации.

Из таких типов файлов я хотел бы извлечь некоторую информацию, относящуюся к моим целям. Хотя большинство из них может быть легко проанализировано и интерпретировано, оно содержит несколько (незапакованных) базовых 64 кодированных полей двоичных/сериализованных данных, представляющих массивы чисел с целыми числами и/или с плавающей запятой. Ссылка на файл примера находится в этом значении.

В конце этого сообщения я включил некоторый фрагмент. AcquisitionTable содержит в общей сложности 19 такие закодированные записи item. Вероятно, это массивы значений integer (SampleNo) и с плавающей запятой (Fluor1).

Как декодированные байты должны быть переведены на целые или плавающие значения, мне все еще не ясно. Когда базовое 64 декодирование, каждый из элементов начинается с следующей (шестнадцатеричной) 6-байтовой последовательности:

42 41 52 5A 00 00 ...    // ['B','A','R','Z','\0','\0', ...]

Обратите внимание, что хотя я ожидаю, что каждый "элемент" содержит одинаковое количество чисел (или "строк" ​​в этой таблице), я наблюдаю за другим количеством декодированных байтов для похожих элементов: 5654 для Fluor1 и 5530 для Fluor2.

Кроме того, для тех массивов, которые, как я подозреваю, содержат (последовательные) целые числа, можно наблюдать шаблон:

SampleNo : ... 1F F5 1F 07 2F 19 2F 2B 2F 3D 2F 4F 2F 61 2F 00 73 2F 85 2F 97 2F A9 2F BB 2F CD 2F DF 2F F1 2F 00 03 3F 15 3F 27 ...
Cycles   : ... 1F FF 1F 11 2F 23 2F 35 2F 47 2F 59 2F 6B 2F 00 7D 2F 8F 2F A1 2F B3 2F C5 2F D7 2F E9 2F FB 2F 00 0D 3F 1F 3F 31 ...
Gain     : ... 1F EE 1F 00 2F 12 2F 24 2F 36 2F 00 48 2F 5A 2F 6C 2F 7E 2F 90 2F A2 2F B4 2F C6 2F 00 D8 2F EA 2F FC 2F 0E 3F 20 3F 32 ...

Он выглядит как пары байтов, где второй байт увеличивается на 0x12 (18), а иногда группа из 3 байтов с 0x00 в качестве второго байта, если последний байтовый бит - 3, D или 8 для трех примеров соответственно.

Мне было интересно, будет ли тип кодирования/формата сериализации для всех очевидным (или, что еще лучше, если у кого-то есть спецификация этого формата файла).

Я считаю, что программное обеспечение, используемое для создания этих файлов, в настоящее время основано на Java, но имеет историю как продукт Windows/MFC/С++.

<obj name="AcquisitionTable" class="AcquisitionTable" version="1">
    <prop name="Count">2400</prop>
    <prop name="ChannelCount">6</prop>
    <list name="Columns" count="19">
        <item name="SampleNo">QkFSWgAABHgCAER0Cu3xAe3wAuv//f8PDyEPADMPRQ9XD2kPew+ND58PsQ8Aww/VD+cP+Q8LHx0fLx9BHwBTH2Ufdx+JH5sfrR+/H9EfAOMf9R8HLxkvKy89L08vYS8Acy+FL5cvqS+7L80v3y/xLwADPxU/Jz85P0s/XT9vP4E/AJM/pT+3P8k/2z/tP/8/EU8AI081T0dPWU9rT31Pj0+hTwCzT8VP10/pT/tPDV8fXzFfAENfVV9nX3lfi1+dX69fwV8A01/lX/dfCW8bby1vP29RbwBjb3Vvh2+Zb6tvvW/Pb+FvAPNvBX8Xfyl/O39Nf19/cX8Ag3+Vf6d/uX/Lf91/738BjwATjyWPN49Jj1uPbY9/j5GPAKOPtY/Hj9mP64/9jw+fIZ8AM59Fn1efaZ97n42fn5+xnwDDn9Wf55/5nwuvHa8vr0GvAFOvZa93r4mvm6+tr7+v0a8A46/1rwe/Gb8rvz2/T79hvwBzv4W/l7+pv7u/zb/fv/G/AAPPFc8nzznPS89dz2/Pgc8Ak8+lz7fPyc/bz+3P/88R3wAj3zXfR99Z32vffd+P36HfALPfxd/X3+nf+98N7x/vMe8AQ+9V72fvee+L753vr+/B7wDT7+Xv9+8J/xv/Lf8//1H/AGP/df+H/5n/q/+9/8//4f8A8/8FDxcPKQ87D00PXw9xDwCDD5UPpw+5D8sP3Q/vDwEfABMfJR83H0kfWx9tH38fkR8Aox+1H8cf2R/rH/0fDy8hLwAzL0UvVy9pL3svjS+fL7EvAMMv1S/nL/kvCz8dPy8/QT8AUz9lP3c/iT+bP60/vz/RPwDjP/U/B08ZTytPPU9PT2FPAHNPhU+XT6lPu0/NT99P8U8AA18VXydfOV9LX11fb1+BXwCTX6Vft1/JX9tf7V//XxFvACNvNW9Hb1lva299b49voW8As2/Fb9dv6W/7bw1/H38xfwBDf1V/Z395f4t/nX+vf8F/ANN/5X/3fwmPG48tjz+PUY8AY491j4ePmY+rj72Pz4/hjwDzjwWfF58pnzufTZ9fn3GfAIOflZ+nn7mfy5/dn++fAa8AE68lrzevSa9br22vf6+RrwCjr7Wvx6/Zr+uv/a8PvyG/ADO/Rb9Xv2m/e7+Nv5+/sb8Aw7/Vv+e/+b8Lzx3PL89BzwBTz2XPd8+Jz5vPrc+/z9HPAOPP9c8H3xnfK98930/fYd8Ac9+F35ffqd+7383f39/x3wAD7xXvJ+8570vvXe9v74HvAJPvpe+378nv2+/t7//vEf8AI/81/0f/Wf9r/33/j/+h/wCz/8X/1//p//v/DQ8fDzEPAEMPVQ9nD3kPiw+dD68PwQ8A0w/lD/cPCR8bHy0fPx9RHwBjH3Ufhx+ZH6sfvR/PH+EfAPMfBS8XLykvOy9NL18vcS8Agy+VL6cvuS/LL90v7y8BPwATPyU/Nz9JP1s/bT9/P5E/AKM/tT/HP9k/6z/9Pw9PIU8AM09FT1dPaU97T41Pn0+xTwDDT9VP50/5TwtfHV8vX0FfAFNc</item>
        <item name="ProgramNo">QkFSWgAABHMCAERvANz///8RDyMPNQ9HD1kPaw8AfQ+PD6EPsw/FD9cP6Q/7DwANHx8fMR9DH1UfZx95H4sfAJ0frx/BH9Mf5R/3HwkvGy8ALS8/L1EvYy91L4cvmS+rLwC9L88v4S/zLwU/Fz8pPzs/AE0/Xz9xP4M/lT+nP7k/yz8A3T/vPwFPE08lTzdPSU9bTwBtT39PkU+jT7VPx0/ZT+tPAP1PD18hXzNfRV9XX2lfe18AjV+fX7Ffw1/VX+df+V8LbwAdby9vQW9Tb2Vvd2+Jb5tvAK1vv2/Rb+Nv9W8Hfxl/K38APX9Pf2F/c3+Ff5d/qX+7fwDNf99/8X8DjxWPJ485j0uPAF2Pb4+Bj5OPpY+3j8mP248A7Y//jxGfI581n0efWZ9rnwB9n4+foZ+zn8Wf15/pn/ufAA2vH68xr0OvVa9nr3mvi68Ana+vr8Gv06/lr/evCb8bvwAtvz+/Ub9jv3W/h7+Zv6u/AL2/z7/hv/O/Bc8XzynPO88ATc9fz3HPg8+Vz6fPuc/LzwDdz+/PAd8T3yXfN99J31vfAG3ff9+R36Pftd/H39nf698A/d8P7yHvM+9F71fvae977wCN75/vse/D79Xv5+/57wv/AB3/L/9B/1P/Zf93/4n/m/8Arf+//9H/4//1/wcPGQ8rDwA9D08PYQ9zD4UPlw+pD7sPAM0P3w/xDwMfFR8nHzkfSx8AXR9vH4Efkx+lH7cfyR/bHwDtH/8fES8jLzUvRy9ZL2svAH0vjy+hL7MvxS/XL+kv+y8ADT8fPzE/Qz9VP2c/eT+LPwCdP68/wT/TP+U/9z8JTxtPAC1PP09RT2NPdU+HT5lPq08AvU/PT+FP808FXxdfKV87XwBNX19fcV+DX5Vfp1+5X8tfAN1f718BbxNvJW83b0lvW28AbW9/b5Fvo2+1b8dv2W/rbwD9bw9/IX8zf0V/V39pf3t/AI1/n3+xf8N/1X/nf/l/C48AHY8vj0GPU49lj3ePiY+bjwCtj7+P0Y/jj/WPB58ZnyufAD2fT59hn3OfhZ+Xn6mfu58AzZ/fn/GfA68VryevOa9LrwBdr2+vga+Tr6Wvt6/Jr9uvAO2v/68RvyO/Nb9Hv1m/a78Afb+Pv6G/s7/Fv9e/6b/7vwANzx/PMc9Dz1XPZ895z4vPAJ3Pr8/Bz9PP5c/3zwnfG98ALd8/31HfY99134ffmd+r3wC938/f4d/z3wXvF+8p7zvvAE3vX+9x74Pvle+n77nvy+8A3e/v7wH/E/8l/zf/Sf9b/wBt/3//kf+j/7X/x//Z/+v/AP3/Dw8hDzMPRQ9XD2kPew8AjQ+fD7EPww/VD+cP+Q8LHwAdHy8fQR9TH2Ufdx+JH5sfAK0fvx/RH+Mf9R8HLxkvKy8APS9PL2Evcy+FL5cvqS+7LwDNL98v8S8DPxU/Jz85P0s/AF0/bz+BP5M/pT+3P8k/2z8A7T//PxFPI081T0dPWU9rTwB9T49PoU+zT8VP10/pT/tPAA1fH18xX0NfVV9nUwA</item>

... отрезанный

        <item name="Fluor1">QkFSWgAAFg0CAFYJ+xwg7vGsP1qIWb738CFAHegc//CsnT/u9cqGyQ8A/PcbfVgeAas/qoOpJwDu/P9SgVE/ACFAHmuwHUcArR0GwX9WAWYUD2l9bgFcD9l7hgFmdA9Jep4BLA8pd7YBZqQPmXXOAYwP0XTmAWa8D0Fz/gHsD7FxFhFmBB9Zby4RHB8BbUYRZjQfqWpeEUwfGWl2EWZkH8FmjhHUD2lkphFmfB8RYr4RlB+5X9YRZqwf8V7uEdwfmVwGIWb0H0FaHiEML+lXNiFmxB+RVU4hPC9xUmYhZiQv4VB+IVQviU6WIWZsL2lLriGcL0lIxiFmtC+5Rt4hzC+ZQ/YhMoQvQQ4y/C8hPiYy/f4zkTw+MRQ/cTlWMUQ/M+E3bjFcP4k1hjF0PzMxM54xLD/ZMLYxpD8zSS/OMYw/KSzmMbw/M5kq/jHsP0EoFkHUPzPpJS5BHE+RI0ZBBE8zASJeQUxPqR92QWRPMxkejkF8TzEapkGUT5p3Ehk0TxEX1kFED/GZE+5BrE+ZEQZRxE9BmQ8eUfRPsQ02USRfWZkLTlE8X3EHZlEMXxmZBX5RbF+JA5ZRhF/BuQKuUZxfof+gx1AgxsVP/hDfUMxXrgb6KJz3UMxfmfiYD2D8X7Fz9LAnYBRvIfMgP2HmTU/wAFdgLG9x7nCcb2Bcb6ntqIdgRG+Jc+qIn2B0bzHoMLdgzqRvoeagz2CMb0nkOUjnYNRv8eHw/2Dsb+eZ35gXcLxvCd4InC9wHH/p2uhHcDR/kXPYkF9wTH9x1XB3cJkgRQZ2JtPgj3Bkf8Gb0MCncCBA7vW+Vs05oL9wlH8RzBDXcMR/5ynIKO9wBH+ZxpicB4Dcf3nDeB+A9H8hg8EgN4EtbzeE7vXu9TlzvThngDyP4brgf4DOJI+JuIiXgGyP+bY5+K+AhI+htKDHgLSP50mySN+AnI/xr/Cc94Dkj9Gs0A+QVI95c6p4J5Csf+mo6D+QzvyPyaXIV5BEn3GjOXBvkCyf4aHgh5DMj+fBnsCfkHSfMZ0wnLeQjJ9JmUjPkBSfuXOXuOeQXJ9hlWD/kM7snwmTCBegpJ95kTl4L6C8nyGPIEehFQ7nAYwAX6BMr6mJqJx3oByvGYgYj6Bkr8FzhcCnoJSvaYNov6DOrK9JgEjXoNSf8H3M7qF8r2B8BrHErwh6zB6xDL+wdzaxJL8gdsxOshUOyHNmsTSvcHHMfrFUvxhvlrFsv8BszK6xnL+gacax3K8QaMzesYS/8GT2seS/mGLMDsH8v0BgJsG0v+hdzD7BFM/IWlbB9K9wWMxuwUTPqFeGwXTPiFTMnsGMzzBStsEsz2hRzM7BpM9ITubBvM+4TMz+wVzPYEoW0QTfCEjMLtEc33hGRtE031hDzF7R1M8AQXbRZN+oPsyO0UzfUDym0XzfwDrMvtGs32g41tHE30g1zO7RlN8oMgbh3N/QL8we4QzveC024STvICtkTuJl3yhm4fTfcCZ+4WZU7xgkluGE74giruFmnO8wIMbh7M8QHd7hZmzvuBr24eTvYBgO8WbM79AWJvEU/7ATPvFmtO+QEFbxRP9wDW7xZlz/4AuG8XT/wAie8cj874b/oNQKzvG8/zAHzObx1P/YBP7x7P+AAlwWAQQPoPufLwAfHQ+sLw8Bs/VfXwAfrX6w+viB8EwPAOz/6/+Z63wHdrbqb6cAZA+gc+KfvwCsD4Dff9cAznwPQNk/7wDcD5DUOY8HEPQP4M/fHxDED+cwyy83EAwfgMZ/nE8QPB9gw19nEJQPsPO+r38QVB8Auv+5O/+5hB9QtU+vEJwf5xCvD8cQtB/QqM/s3xAkGJAa7xCqP7CTpa/3EMwfAMZS/B/gc53fJyAULzCZLz8gzmwf8JLvVyAsL9CPOc9vIFwvkImPhyB0L+fghN+fIIwvMIAvmLcgJBdGVQ99ziGkL1+ZeOYh1C8fcv4irX7fmWsWMewvn2UuMQQ/f5liRjEcP89dXjFMPx+ZWXYyZa7fUo4xfD8vmU6mMZQ/70e+MTQ/P5lD1jGsPx9A7jN2bW+ZOwZB9D+/Nh5BDE/vmS42QSRPPypOQTxPj5klZkFUT28ifkHEPy+ZHJZBbE/vFa5BhE8/mRHGQZxP/wreQcxPv5kE9kHkHw8ADlG0T1/r+14nUB6tfh/1Hsw/UW1P8G5XUCxfL+o5Lm9QXF+f6J6HUERYzu8Uz+DOn1B0Xz/fOT63UERf/9j+z1CkX+dP1E7nUNRfn8+eHP9Q7F/vyu4XYLxX3mXnz8fOL2C8X6/ErpxHYDRvb75uX2BMb99zvN53YBxvD7UOj2DOBG9fsF6nYJRvH6o5Hr9hZa5Pok7XYIxf5y+fLu9grG/vmO6cB3DEb6+Srh9wDH9vc4xuN3Akf9+K3k9wzjx/n4SeZ3B8b15+zH5x9G+ueZZxhH/+dMyucZx/3nHGcbR/DmrM3nFUf85j9nHkf65gzA6BzH/+WyaBFI9OV8w+gfx/LlRWgSyPzkrMboFcj65HhoF0j45EzJ6BjI9OPraBRI8OOMzOgaSPXjPmgWx/ri7M/oG8j24oFpHUj94mzC6RHJ8OH0aRNJ9+HcxekQSfXhp2kUyfrhWYjpF8mO8U/hCmkXyfvpkKvpGUn34E1pGsn165Ae6R3J+u/K0HoB3WBZ/2bR+gHTWf7Q0cN6AMr37rfU+gPKjvFOc+5T1noDyvjuCNnH+gJK/e292XoISvvnPYva+gbK9+0n3HoHKcr15eMsyvHskd96HOrQ5uxG0PsLSvvr85vSew/K9+uX0/sBS/5z6zPVewRL+Oro2cb7Bcv76mvYewLL8Oc6INn7B0v16dXbewzoy/jpWNz7Ckv96QOd3nsNS/noqd/7Dsv0dehF0XwLy/X5J+HM8zbXlGwTTPLXNewUzPM31udsFkzz1ojsF8z5MdZabCNc9gvsEEz00xXdbBrMjvFA1X7sGszzPNUAbR9M89Tx7RxM8z/Ug20QzfTURO0TzfmZ1l0lTf7Tp+0dzPzZk3ltFs3x0zrtKtzy7MxtG0370p3tEk3w0lzPbRhN/NHg7hzN+tG8wm4eTfbRU+4RTvnQ3MVuFE7+0IbuFc760CXIbhdO9t/Gyf4BzN33P3vLfgpO8N8wzP4By86O8UPes85+C8724TztTvTeBMF/Ds753bOZwv8AT/XdVcR/Ac/9fN08xf8Bw1Do3NcYx38GT47xTdyNyP8M5M/y3ELKfwZP99vzl8v/CU/826zNfwrP/njbSM7/DE/22xbJwHAPT/LassHwAMD11zo1w3ADT/HZ0cTwHOrQ7dltxnAFQPvZM5vH8AbA+dkJyXAIQP512KXK8AnA89hzycxwA8D/2A/N8AzA8smXn2Adz/fHQOEbQPPBluJhEUH4xpPhEsF74lM0xjVhEsH3xbbhFcHzNcWIYRdB+sU54RjB8z3Eu2EaQfLEfOEbwfk+xA5hHUHzz+Enz/jJk3FiHsH2w0LiEcL0yZMUYhNC98KV4hTC9cYSZ2IWQvviPkD/wcpiE2fC9MGL4hHEB+VcYWmRXWIZQvzAvuIawvrJkIBjHcL2wCHjH0Lyxr/Cs3MBtlL/RbTzA4PD9OP4BT/Or7fzBsP+dM5kuXMIQ/LOMrnK8wnD/s3OvHMLQ/PHPYO98wzD+M04v3MM7kP0zNSw9A/D+cyHWbJ0AbxS58xXs/QJwUSM+UrL2rV0BET/xzuPtvQFxPLLErh0CdG1V+DK4Ln0B0T8xzp8u3QBRPjKGLz0DOpE9snmvnQIxPvJk5u/9AvE8MlQsXUARf51yQWy9QHF88jTuYR1AsSJ8lhvtfUDRfvDOAu3dQZF8LfI5R1E8zW3emUXxfG3G+Uu1eM2ts1lHEXytm7lHcXzN7YQZh9F87Wx5hDG8zi1Y2YSRv21FOYSxPM5tLZmE8b8tDfmFsbzM7QpZhhG/7O65hnG8zSzfGYbRvKzTeYZRfM+st9mHMb1ssDnHkbzOLJCZx/G/bHz5xFH8zKxtWcexP6xRucSx/MzsQhnF0f4sLnnGMf3MrArZxTF8L/wrPcM0adX/3Oudw1H+r9Tmq/3Dsf/vw+heABI/HK+kqL4AciMd15gqcR4AcjzveOl+ATI8bc9sad4HFnrvRuo+AmGSPjo7Hdc0Kv4Csj8tzxsrXgMSPG8Ia74HmxV+9ageQ3I+7uLqcH5AMn3uyejeQ9I8766w6T5AaTV7botqcZ5Akn7ufun+QPJ9bc5Zal5CEn6uRqq+Qzpyf+4z6x5Bsn0uIOUrfkLSfm4Oa95DknzPqfg6h/J/KeyahFK8z+nM+oSyvSm9WocyfM5pqbqFErwpphqFcr6M6YZ6hdK+vAlykr7qZVM6hjK9aS+ahvK8aqUX+oi2vQRaxGu2+upk7LrEEv3o1RrHUrzqZL16xVJ9qJ3axZL+6mSKOsTS/Ch6msUy/qpkUvrGUvxoT1rIlntqZDO6xfL+6CQbB3L96uQMewcS/Ov05N8AZxqWv+IlPwDzIL5RK8jlJZ8BUzyrvKX/APM/Xeup5l8AZxS7K5TnJr8CEz4rficfAtM/Mxs/IpNe598Dkz5rUOZkP0PzPWs5ZJ9AU3+eKxok/0Czf2sHZ5FfQbM8KBsJE31q1WZyH0FzfGq8Zn9FVz6c5SbfQdN8qpCnP0Lzf5+qd6efQ1N+ql6mc/9Ck3xqWGRfhTV5Kc45JL+Ds3yqLKUfgrjTvCogJX+AZ3f7KM4HJd+BM7xl9juIlnjNpeKbhfO9Jdb7hrO8zCW/W4cTv6Wvu4dzvMzlnBvH074liHvGU7zPZXTbxHO+5Wk7xDP8z6VJm8VT/OU5+8Wz/M2lGlvGE/7lBrvGc/zPpOcbxJP+pM97xnM8ziTD28cz/KScOATz/M+kgJgG0/zkcPgH8/zPZElYB5P8pDm4BRA8zWQaGASwPOQOeAYwP12n7aLcAGCWeSfg5SM8AvA8J8gjnANQIOM/l5wROXVntWBcQ7A/nqeioLxDUD/nj+JxHEBwfKdwoXxA0Hwnj2Qh3EAQYH0RZ1FicjxBkH6nPqKcQBB/5c8r4vxBMH0nGSNcQzpQfmcGY7xDEH8m5OcgHIKwf+bH4HyAML+fZrtg3INwfuau4nE8gPC95pXhnIPQfWXOiWH8gbC+JmoiXIM5UL0mUSK8gnC8JjjkIxyC0L1mJWN8gzC9nGYMY9yElnrh5DjFmJC94cyYx/C/Ibj4xZiw/GGpWMhVOSGJuMWZEPyhfhjF0P3hanjFmXD/IVbYxjD8YUc4yZiWeSEnmMdQ/CEP+MWbsP8g8FkEUP4g2LkFmHE9IMEZBBE8IKl5BZkxPWCV2QaQ/iB2OQWY0T0gXpkF8T5gSvkFmrE84CdZBZE8YBu5CrjUe2P/XB1AXlU/+NUcfUBeNP/Z3N1AkX8dY81dPUDxY75So7jmnZ1A8X4jrh39QDFjmZzXlR5dQVF943Xecr1CcXzjXN8dQtF/4c9D331DMX7jKt/dQzgxfCMYHD2BsX+jCOecnYBRvGLsXP2FtX3O5h1dg5F+4sbdvYM5cb5iul4dg/F94qzl3n2BEb+ip57dgpG/nOKU3z2C8b2idZ5znYIxvuJi3/2B0bwhzlAcXcNRvyI3HL3DOHH84jDdHcDR/aISZZ19wTH8nfnZxZH9XmXaOcXx/N3OmcZR/15lpvnEEf7dm1nGEX3eZYO5x7G83WgaBrH+HmVUegcR/R082gfR/B5lJToEMjzdBZoFUj6fMfYI8j0c2loFsj7c0zK6BnI/nLMaBJI+nJszegbSPZyD2geSPJxrMDpH8j1cSJpEUnxcMZD6SrX8FVpHcfycBbpGuRJ9X+VaHkBZtj/Rxpp+QjJjvlPfv9reQzoyf1+zWz5CknyfouSbnkLyfl+aW/5AWzg0uV+BWF6Dsn6fbOaYvoByv99b2R6DUn+e30LZfoASvd8p2nHegTK9Xx1aPoDSvN3PENqegfK9nvGa/oM6Ur9e61tegZK8ntjkm76Csr3exdgew3K+Hx6zGH7DErx61rh2Hc6aGT7Akv/ek9mewzlS/J50mf7A8v5ebOZaXsGy/x5PGr7Ccv2cXjxbHsVW/i/bfsM7Mv7eFtvewhL92f8wOweS/xnomwfy/hnTMPsEUz7ZsVsEsz5ZpzG7BRM/GYYbBXM+mXsyewXTPZli2wYzP1lbMzsGkz7ZT5sG8z+ZLKP7B1M/XEkgE32Yt0hzfZC7f+MQyXtFM33Y0dtGGZN8WK47Sfd+P32EiRpkjvtHsz7Yh1tGs35YxHu7RxNh/ZDYVBuH0rzMWEh7iDS5GCjbhJO9zJgdO4Qzvxv3FZ+CdFQ0uFvkVf+E1HgbD6wWX4Gzvlu+YxOGlHMfgtO/23PXf4ITof2TnltOV9+Dk73bQdZwP8PzvNso1J/AU/2ZzwmU/8MzvJrwlV/DORP9WtFVv8ITvNrE5NYfwdP+2pLWf8Iz/nJ71rh02mDXP8Lz/pnOWpefwpP9GjUX/8M7U/5aIlRcABA9WgrlVLwAcBxrIGT8AqWc/pX1GAez/9XheAcYcDyVxdgFkCH9ktXLMjgFkD1VppgGUDzVmzL4BTA8VY9YCNR4FbszuAawP5WoGEXwPhWHMHhH0D0VbNhEkH3VTzE4RDB+lS2YRPB9lRcx+EWwf1UOWEYQftUAMrhHcD5U9xhG0H8YfYCMzxTX2EZwfNTQOIfwfQ0UpJiEULyYvABQfViFm5B9VHm4hXC+FFoYhZkQv1RGeIYwvBQq2IWakL+UGziF0LzUC5iGuLP/V+NT/IBR9D/UxtBcwBDj/Be3kLzAcP+c16TRHMDQ/9eL0Ol8wFCVetdy0dzAEP+fV39SPMGQ/5dTkcKcwlD+mNc7tFc0U1zGYxT/XNGY+w7QHQPQ/5VO75B9A3D+loPG1JE/nRaxET0A8TyWpJJxnQAxPVaFUf0BUTzVznjSXQGxPFZsUr0HGTQ+X9MdAtEh/ZEWTOUTfQIRPBY0E90DkT+dViFQPUPxPNYU0nCdQfD+FgIQ/UBRftGF4VlFEX1ZVdm00bIZRZlxf9GWeUbRPlFy2UWaMX8RUzlF0XxRQ5lJmZd5ESP5R7F8kRRZhZgRvVD0uYbxfxDtGYWY0bzQ6XmFMb4Q1dmFmZG9kMo5hfG+UKqZhZpRv5CW+YaxvFB7WYmZdniQT7mEcb1QLBnHm9G+kBh5xxG9E/UM6N3ATZd4E9wNPcDx/16Tto2dwE8Vv7BOcf3HN7tTl05dwVH9Ew+RDr3CEf65/cKN03Dlz33Ccf8TXw/dwzHjO7+TUzNMPgOR/RMs5QyeAFI9UwFM/gCyPzD6FZm64g2+AXI/UsznTh4B0j7Sws5+ARI/nBKwDt4Ckj5StkxzPgLyPhJ+D54CMj+aP5rBUlJMXkASfVI5TnC+Q1I/0hPNHkDSfs2F+XpFMn16dPgUTb46SZs3uM3KmkWSfY2q+kWaUn7Nl1pHEn+Nd7pFm3J8TVgaize6jVx6hZgyvQ042oSSvI0tOoWasn8NBZqE8rzNAfqFmbK9DNZahhK+TMK6hZpyv4yvGoVSvMyfeoQC0pwA</item>

... отрезанный

        <item name="Gain6">QkFSWgAACOQCAEjgBu3z8D/u/wAPEg8kDzYPAEgPWg9sD34PkA+iD7QPxg8A2A/qD/wPDh8gHzIfRB9WHwBoH3ofjB+eH7Afwh/UH+YfAPgfCi8cLy4vQC9SL2Qvdi8AiC+aL6wvvi/QL+Iv9C8GPwAYPyo/PD9OP2A/cj+EP5Y/AKg/uj/MP94/8D8CTxRPJk8AOE9KT1xPbk+AT5JPpE+2TwDIT9pP7E/+TxBfIl80X0ZfAFhfal98X45foF+yX8Rf1l8A6F/6XwxvHm8wb0JvVG9mbwB4b4pvnG+ub8Bv0m/kb/ZvAAh/Gn8sfz5/UH9if3R/hn8AmH+qf7x/zn/gf/J/BI8WjwAojzqPTI9ej3CPgo+Uj6aPALiPyo/cj+6PAJ8SnySfNp8ASJ9an2yffp+Qn6KftJ/GnwDYn+qf/J8OryCvMq9Er1avAGiveq+Mr56vsK/Cr9Sv5q8A+K8Kvxy/Lr9Av1K/ZL92vwCIv5q/rL++v9C/4r/0vwbPABjPKs88z07PYM9yz4TPls8AqM+6z8zP3s/wzwLfFN8m3wA430rfXN9u34Dfkt+k37bfAMjf2t/s3/7fEO8i7zTvRu8AWO9q73zvju+g77LvxO/W7wDo7/rvDP8e/zD/Qv9U/2b/AHj/iv+c/67/wP/S/+T/9v8ACA8aDywPPg9QD2IPdA+GDwCYD6oPvA/OD+AP8g8EHxYfACgfOh9MH14fcB+CH5Qfph8AuB/KH9wf7h8ALxIvJC82LwBIL1ovbC9+L5Avoi+0L8YvANgv6i/8Lw4/ID8yP0Q/Vj8AaD96P4w/nj+wP8I/1D/mPwD4PwpPHE8uT0BPUk9kT3ZPAIhPmk+sT75P0E/iT/RPBl8AGF8qXzxfTl9gX3JfhF+WXwCoX7pfzF/eX/BfAm8UbyZvADhvSm9cb25vgG+Sb6Rvtm8AyG/ab+xv/m8QfyJ/NH9GfwBYf2p/fH+Of6B/sn/Ef9Z/AOh/+n8Mjx6PMI9Cj1SPZo8AeI+Kj5yPro/Aj9KP5I/2jwAInxqfLJ8+n1CfYp90n4afAJifqp+8n86f4J/ynwSvFq8AKK86r0yvXq9wr4KvlK+mrwC4r8qv3K/urwC/Er8kvza/AEi/Wr9sv36/kL+iv7S/xr8A2L/qv/y/Ds8gzzLPRM9WzwBoz3rPjM+ez7DPws/Uz+bPAPjPCt8c3y7fQN9S32Tfdt8AiN+a36zfvt/Q3+Lf9N8G7wAY7yrvPO9O72Dvcu+E75bvAKjvuu/M797v8O8C/xT/Jv8AOP9K/1z/bv+A/5L/pP+2/wDI/9r/7P/+/xAPIg80D0YPAFgPag98D44PoA+yD8QP1g8A6A/6DwwfHh8wH0IfVB9mHwB4H4ofnB+uH8Af0h/kH/YfAAgvGi8sLz4vUC9iL3Qvhi8AmC+qL7wvzi/gL/IvBD8WPwAoPzo/TD9eP3A/gj+UP6Y/ALg/yj/cP+4/AE8STyRPNk8ASE9aT2xPfk+QT6JPtE/GTwDYT+pP/E8OXyBfMl9EX1ZfAGhfel+MX55fsF/CX9Rf5l8A+F8KbxxvLm9Ab1JvZG92bwCIb5pvrG++b9Bv4m/0bwZ/ABh/Kn88f05/YH9yf4R/ln8AqH+6f8x/3n/wfwKPFI8mjwA4j0qPXI9uj4CPko+kj7aPAMiP2o/sj/6PEJ8inzSfRp8AWJ9qn3yfjp+gn7KfxJ/WnwDon/qfDK8erzCvQq9Ur2avAHiviq+cr66vwK/Sr+Sv9q8ACL8avyy/Pr9Qv2K/dL+GvwCYv6q/vL/Ov+C/8r8EzxbPACjPOs9Mz17PcM+Cz5TPps8AuM/Kz9zP7s8A3xLfJN823wBI31rfbN9+35Dfot+038bfANjf6t/83w7vIO8y70TvVu8AaO9674zvnu+w78Lv1O/m7wD47wr/HP8u/0D/Uv9k/3b/AIj/mv+s/77/0P/i//T/Bg8AGA8qDzwPTg9gD3IPhA+WDwCoD7oPzA/eD/APAh8UHyYfADgfSh9cH24fgB+SH6Qfth8AyB/aH+wf/h8QLyIvNC9GLwBYL2ovfC+OL6Avsi/EL9YvAOgv+i8MPx4/MD9CP1Q/Zj8AeD+KP5w/rj/AP9I/5D/2PwAITxpPLE8+T1BPYk90T4ZPAJhPqk+8T85P4E/yTwRfFl8AKF86X0xfXl9wX4JflF+mXwC4X8pf3F/uXwBvEm8kbzZvAEhvWm9sb35vkG+ib7Rvxm8A2G/qb/xvDn8gfzJ/RH9WfwBof3p/jH+ef7B/wn/Uf+Z/APh/Co8cjy6PQI9Sj2SPdo8AiI+aj6yPvo/Qj+KP9I8GnwAYnyqfPJ9On2Cfcp+En5afAKifup/Mn96f8J8CrxSvJq8AOK9Kr1yvbq+Ar5KvpK+2rwDIr9qv7K/+rxC/Ir80v0a/AFi/ar98v46/oL+yv8S/1r8A6L/6vwzPHs8wz0LPVM9mzwB4z4rPnM+uz8DP0s/kz/bPAAjfGt8s3z7fUN9i33Tfht8AmN+q37zfzt/g3/LfBO8W7wAo7zrvTO9e73Dvgu+U76bvALjvyu/c7+7vAP8S/yT/Nv8ASP9a/2z/fv+Q/6L/tP/G/wDY/+r//P8ODyAPMg9ED1YPAGgPeg+MD54PsA/CD9QP5g8A+A8KHxwfLh9AH1IfZB92HwCIH5ofrB++H9Af4h/0HwYvABgvKi88L04vYC9yL4Qvli8AqC+6L8wv3i/wLwI/FD8mPwA4P0o/XD9uP4A/kj+kP7Y/AMg/2j/sP/4/EE8iTzRPRk8AWE9qT3xPjk+gT7JPxE/WTwDoT/pPDF8eXzBfQl9UX2ZfAHhfil+cX65fwF/SX+Rf9l8ACG8abyxvPm9Qb2JvdG+GbwCYb6pvvG/Ob+Bv8m8EfxZ/ACh/On9Mf15/cH+Cf5R/pn8AuH/Kf9x/7n8AjxKPJI82jwBIj1qPbI9+j5CPoo+0j8aPANiP6o/8jw6fIJ8yn0SfVp8AaJ96n4yfnp+wn8Kf1J/mnwD4nwqvHK8ur0CvUq9kr3avAIivmq+sr76v0K/ioQ</item>
    </list>
</obj>

Ответ 1

Это то, что я до сих пор. Документ, который вы используете, не от реального запуска ПЦР, как это было сделано из читаемых данных. Это прогон цветокоррекции (краткий обзор, который, по-видимому, соответствует файлу) (полное обновленное руководство, стр. 250, а не как вариант). В частности, это, по-видимому, выполнение цветокоррекции для "красителя FAM/Pulsar 650".
Тип вывода, как вы указываете, это "AcquisitionTable" с 2400 "счетными", которые, по-моему, должны отличаться от вывода, который вы обычно получаете от запуска PCR. Я уверен, что вы их уже нашли, но несколько публичных примеров шаблонов PCR (не завершенных запусков) здесь, здесь, здесь и .

Согласно LCRunProgram в вашем файле, здесь был протокол:
держите 95 ° C для 0 "со скоростью 20 ° C/с
держите 40 ° C на 30 °, 20 ° C/с
удерживайте 95 ° C для 0 "при 0,1 ° C/с, режиме приема" 2 ".

Итак, мы ожидаем, что временные рамки сбора данных оценивались приблизительно (95 ° C-40 ° C)/0,1 ° C/s = 550 секунд, приблизительно; за это время должно было быть зафиксировано фиксированное количество событий приобретения в секунду.

EDIT 0 - это то, что я сделал с самого начала, поэтому я не удаляю его, но позже получил более интересную информацию (см. ниже).

Я просмотрел данные с помощью простого Python script (я парень Python) для поиска шаблонов. script хранит ваши исходные строки данных в словаре с именем values, который слишком длинный для публикации здесь; так что вот он в сущности, как и вам.

#!/usr/bin/env python3

import base64
from collections import OrderedDict, defaultdict
from values import values

def splitme(name, sep):
    splitted = base64.b64decode(values[name]+'==').split(sep)
    print("{:<12} [{}; {}] separated in {} chunks: {}".format(
            name,
            len(values[name]), len(base64.b64decode(values[name]+'==')),
            len(splitted),
            [len(i) for i in splitted]))
    return splitted

if __name__ == '__main__':
    allchunks = defaultdict(list)
    separator = b'\r'
    print("separating by:", separator)
    for key in values:
        data = splitme(key, sep=separator)
        for i, item in enumerate(data):
            allchunks[item].append((key, i))
    print("Common chunks:")
    for location in [value for item, value in allchunks.items() if len(value)>1]:
        print(location)

Позвольте получить очевидное изложение и сказать, что ProgramNo и CycleNo содержат одни и те же данные; и все Gain идентичны. Поэтому я отправлю только один из них.

Теперь, попробовав script с разделителем b'\r' (просто попробуйте один), вырезает несколько из них в кусках 272 (271 + разделителей) байтов. Остальные не аккуратны.

separating by: b'\r'
SampleNo     [1536; 1152] separated in 5 chunks: [174, 271, 271, 271, 161]
ProgramNo    [1531; 1148] separated in 6 chunks: [47, 271, 271, 271, 271, 12]
SegmentNo    [1531; 1148] separated in 5 chunks: [169, 271, 271, 271, 162]

Разделение на b'\t' дает похожие результаты:

separating by: b'\t'
SampleNo     [1536; 1152] separated in 5 chunks: [204, 271, 271, 271, 131]
ProgramNo    [1531; 1148] separated in 5 chunks: [76, 271, 271, 271, 255]
SegmentNo    [1531; 1148] separated in 5 chunks: [199, 271, 271, 271, 132]

И разделение на b'\n' разделяет выигрыши на этот раз аналогичным образом:

separating by: b'\n'
Gain1        [3046; 2284] separated in 10 chunks: [81, 271, 271, 271, 271, 271, 271, 271, 271, 26]  

Поэтому я вовсе не подразумеваю, что эти "разделители" имеют какое-либо значение; Я думаю, что это редкие персонажи, которые, как представляется, режут данные в 272-байтовых фрагментах, и это значение, 272 байта, может быть важно для понимания того, как эти данные хранятся.

Начало каждой строки "BARZ" выглядит как "foo-bar"; вероятно, установлен как проверка в начале заголовка.

Интересно другое: данные gains разделяются на 8 блоков равного размера (плюс два других меньших блока). Если эти данные из 96-луночного планшета, я бы начал изучать, может ли это быть заголовок, а затем 8 кусков (линий), которые будут разделяться в 12 элементах (colums), так что 8 * 12 = 96, копируя настройку 96-луночного планшета.

Кроме того, если гипотеза "272 байта на строку" истинна, то данные в ProgramNo, SampleNo и т.д., которые разделены на 272-байтовые фрагменты, могут быть объяснены, если тарелка не заполнена, а некоторые скважины имели образцы (с несколькими полными линиями), в то время как другие были пустыми. Я не уверен, что это будет иметь смысл для пластины компенсации цвета.

Time, Temperature, Error и Fluor не разделяются на куски, и вы считаете, что они представляют собой набор непрерывных значений; не обязательно плавает. Флуоресценцию можно зафиксировать как "единицы", которые могут быть положительными ints (у меня нет LightCycler, поэтому я не знаю, имеет ли это случай или нет).

И это я до сих пор. Я не уверен, что у меня будет время пойти дальше. В случае, если я не отвечу, удачи в ваших усилиях.

ИЗМЕНИТЬ 1:

Таким образом, в отношении данных SampleNo он выглядит таким образом:
1) заголовок, который может быть или не быть разделен 0x00 как:
 * заголовок BARZ, затем 2 раза 0x00 (всего 6 байт)
 * три байта, затем 0x00 (всего 4 байта)
 * 17 байт, затем 0x00 (всего 18 байт)
2) ряд данных, каждый из которых состоит из 16 байтов и заканчивается 0x00 (по меньшей мере, 17 байт).
Это означает, что Samples содержит заголовок плюс 66 наборов из 17 байтов.

ИЗМЕНИТЬ 2:

Разделение всего на 0x00 с помощью этой ужасной части кода:

def splitme(name):
    data = base64.b64decode(values[name]+'==')
    hit = 0
    index = 0
    countit = 0
    splits = []
    while hit >= 0 and countit < 500:
        countit += 1
        hit = data[index+1:].find(0)
        index += hit+1
        if hit >= 0:
            splits.append(index)
    lastindex = -1
    splitted = []
    if splits:
        for index in splits:
            splitted.append(data[lastindex+1:index])
            lastindex = index
    else:
        splitted = [data]

Урожайность:

separating by: 0x0
SampleNo     [1536; 1152] separated in 70 chunks: [4, 0, 3, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]
ProgramNo    [1531; 1148] separated in 71 chunks: [4, 0, 3, 2, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 12]
SegmentNo    [1531; 1148] separated in 69 chunks: [4, 0, 3, 18, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]
CycleNo      [1531; 1148] separated in 71 chunks: [4, 0, 3, 2, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 12]
Time         [11944; 8958] separated in 63 chunks: [4, 0, 3, 45, 14, 42, 76, 46, 172, 110, 109, 15, 81, 90, 111, 108, 78, 46, 175, 141, 88, 209, 74, 117, 156, 170, 59, 107, 78, 103, 125, 171, 103, 170, 191, 333, 154, 187, 11, 257, 149, 208, 173, 156, 153, 412, 72, 55, 207, 131, 131, 274, 284, 238, 19, 241, 247, 13, 74, 558, 763, 8, 0]
Temperature  [6731; 5048] separated in 14 chunks: [4, 0, 3, 394, 186, 543, 177, 173, 530, 534, 371, 714, 373, 1032]
Error        [398; 298] separated in 21 chunks: [4, 0, 3, 2, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 12]
Fluor1       [7539; 5654] separated in 38 chunks: [4, 0, 3, 31, 13, 7, 7, 426, 331, 218, 187, 11, 10, 13, 7, 6, 7, 48, 45, 217, 840, 6, 7, 14, 7, 6, 7, 7, 6, 1178, 8, 6, 1147, 7, 6, 141, 630, 2]
...
Gain1        [3046; 2284] separated in 145 chunks: [4, 0, 3, 9, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 7, 16, 16, 16, 16]
...

So SampleNo, ProgramNo, SegmentNo, Error и Gain все разделены блоками по 17 байт (16 байт + 0x00).

ИЗМЕНИТЬ 3:
Первые пятнадцать 17-разрядных фрагментов ProgramNo (и копия CycleNo) и Error идентичны.
Просто для пояснения, "куски", которые я описываю, - это то, что вы описываете как ряд пар чисел, один из которых увеличивается на 0x12. 0x00, о котором вы упоминаете, является разделителем между кусками.

ИЗМЕНИТЬ 4:
Что касается данных Gain, то связь между моими начальными блоками "272 байта" и блоками (16 + 0x00) -байта состоит в том, что существует повторяющийся шаблон из 16 блоков, из которых 15 - блоки "16 + 0x00" и один последний блок имеет 0x00 в середине. Итак, 17 байт (= 16 + 0x00) * 16 блоков = 272 байта для этого повтора.
Вся строка построена следующим образом: "заголовок", затем 8 таких повторов 17 байт * 16 блоков, а затем четыре 17-байтных блока в конце. Так что с одной стороны я был прав насчет 8 блоков, но, по-видимому, я ошибся, когда делал параллель с плитой ПЦР 8x12. Здесь это больше похоже на 8 * 16 (+4).
Из-за данных Fluor и т.д. У меня нет ответа, но я бы попытался удалить заголовок и посмотреть, может ли с ним работать алгоритм сжатия (integer или float)... Сжатые данные объяснят, почему у вас разные длины для этих полей.

Ответ 2

This is what I found so far. (Some of it overlaps with what you already found)
The data is encoded in Base64, where the padding (=) is missing, so you will need to add that. 
The first bytes identify the kind of data. The file I am looking at has DARZ/LARZ/FORM/Empty.  

DARZ = Double[]
LARZ = Time? Havent decoded this
FORM = Double[][] (has 96 DARZ fields), this is the only field where byte 6 is 01x
Empty = Just a bunch of 0-1-2 

For the first three types the first four bytes thus identify the type.
byte 1-4            = TypeID
byte 5-8            = The size of the element  (BigEndian)
byte 9-12           = Checksum?
byte 13 - 13+length = the actual data.