Формула Хаверсина в Python (Подшипник и расстояние между двумя точками GPS)

Проблема

Я хотел бы знать, как получить расстояние и расстояние между двумя точками GPS. Я исследовал формулу гаверсина. Кто-то сказал мне, что я также могу найти подшипник, используя те же данные.

Изменить

Все работает нормально, но подшипник еще не работает. Выходы подшипника отрицательные, но должны быть между 0 - 360 градусов. Установленные данные должны составлять горизонтальный подшипник 96.02166666666666 и есть:

Start point: 53.32055555555556 , -1.7297222222222221   
Bearing:  96.02166666666666  
Distance: 2 km  
Destination point: 53.31861111111111, -1.6997222222222223  
Final bearing: 96.04555555555555

Вот мой новый код:

from math import *

Aaltitude = 2000
Oppsite  = 20000

lat1 = 53.32055555555556
lat2 = 53.31861111111111
lon1 = -1.7297222222222221
lon2 = -1.6997222222222223

lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
Base = 6371 * c


Bearing =atan2(cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1), sin(lon2-lon1)*cos(lat2)) 

Bearing = degrees(Bearing)
print ""
print ""
print "--------------------"
print "Horizontal Distance:"
print Base
print "--------------------"
print "Bearing:"
print Bearing
print "--------------------"


Base2 = Base * 1000
distance = Base * 2 + Oppsite * 2 / 2
Caltitude = Oppsite - Aaltitude

a = Oppsite/Base
b = atan(a)
c = degrees(b)

distance = distance / 1000

print "The degree of vertical angle is:"
print c
print "--------------------"
print "The distance between the Balloon GPS and the Antenna GPS is:"
print distance
print "--------------------"

Ответ 1

Здесь версия Python:

from math import radians, cos, sin, asin, sqrt

def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """
    # convert decimal degrees to radians 
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 
    r = 6371 # Radius of earth in kilometers. Use 3956 for miles
    return c * r

Ответ 2

Большинство из этих ответов "округляют" радиус Земли. Если вы сравните их с другими калькуляторами расстояний (такими как геопсия), эти функции будут отключены.

Это хорошо работает:

from math import radians, cos, sin, asin, sqrt

def haversine(lat1, lon1, lat2, lon2):

      R = 3959.87433 # this is in miles.  For Earth radius in kilometers use 6372.8 km

      dLat = radians(lat2 - lat1)
      dLon = radians(lon2 - lon1)
      lat1 = radians(lat1)
      lat2 = radians(lat2)

      a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2
      c = 2*asin(sqrt(a))

      return R * c

# Usage
lon1 = -103.548851
lat1 = 32.0004311
lon2 = -103.6041946
lat2 = 33.374939

print(haversine(lat1, lon1, lat2, lon2))

Ответ 3

Расчет подшипника неверен, вам нужно поменять местами на atan2.

    bearing = atan2(sin(long2-long1)*cos(lat2), cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(long2-long1))
    bearing = degrees(bearing)
    bearing = (bearing + 360) % 360

Это даст вам правильный подшипник.

Ответ 5

Вы можете решить проблему отрицательного подшипника, добавив 360 °. К сожалению, это может привести к тому, что подшипники будут больше 360 ° для позитивных подшипников. Это хороший кандидат для оператора modulo, поэтому в целом вы должны добавить строку

Bearing = (Bearing + 360) % 360

в конце вашего метода.

Ответ 6

Вы можете попробовать следующее:

from haversine import haversine
haversine((45.7597, 4.8422),(48.8567, 2.3508),miles = True)
243.71209416020253

Ответ 8

Y в atan2 по умолчанию является первым параметром. Вот документация . Вам нужно будет переключить свои входы, чтобы получить правильный угол поворота.

bearing = atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)in(lat1)*cos(lat2)*cos(lon2-lon1))
bearing = degrees(bearing)
bearing = (bearing + 360) % 360

Ответ 9

Обратитесь к этой ссылке: https://gis.stackexchange.com/questions/84885/whats-the-difference-between-vincenty-and-great-circle-distance-calculations

это фактически дает два способа получить расстояние. Это Хаверсине и Винсентис. Из моих исследований я узнал, что Винцентис относительно точен. Также используйте инструкцию import для выполнения.

Ответ 10

Существует также векторизованная реализация, которая позволяет использовать 4 числовых массива вместо скалярных значений для координат:

def distance(s_lat, s_lng, e_lat, e_lng):

   # approximate radius of earth in km
   R = 6373.0

   s_lat = s_lat*np.pi/180.0                      
   s_lng = np.deg2rad(s_lng)     
   e_lat = np.deg2rad(e_lat)                       
   e_lng = np.deg2rad(e_lng)  

   d = np.sin((e_lat - s_lat)/2)**2 + np.cos(s_lat)*np.cos(e_lat) * np.sin((e_lng - s_lng)/2)**2

   return 2 * R * np.arcsin(np.sqrt(d))

Ответ 11

Вот две функции для расчета расстояния и несущей, которые основаны на коде в предыдущих сообщениях и https://gist.github.com/jeromer/2005586 (добавлен тип кортежа для географических точек в формате lat, lon для обеих функций для ясности). Я тестировал обе функции, и они, похоже, работают правильно.

#coding:UTF-8
from math import radians, cos, sin, asin, sqrt, atan2, degrees

def haversine(pointA, pointB):

    if (type(pointA) != tuple) or (type(pointB) != tuple):
        raise TypeError("Only tuples are supported as arguments")

    lat1 = pointA[0]
    lon1 = pointA[1]

    lat2 = pointB[0]
    lon2 = pointB[1]

    # convert decimal degrees to radians 
    lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2]) 

    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 
    r = 6371 # Radius of earth in kilometers. Use 3956 for miles
    return c * r


def initial_bearing(pointA, pointB):

    if (type(pointA) != tuple) or (type(pointB) != tuple):
        raise TypeError("Only tuples are supported as arguments")

    lat1 = radians(pointA[0])
    lat2 = radians(pointB[0])

    diffLong = radians(pointB[1] - pointA[1])

    x = sin(diffLong) * cos(lat2)
    y = cos(lat1) * sin(lat2) - (sin(lat1)
            * cos(lat2) * cos(diffLong))

    initial_bearing = atan2(x, y)

    # Now we have the initial bearing but math.atan2 return values
    # from -180° to + 180° which is not what we want for a compass bearing
    # The solution is to normalize the initial bearing as shown below
    initial_bearing = degrees(initial_bearing)
    compass_bearing = (initial_bearing + 360) % 360

    return compass_bearing

pA = (46.2038,6.1530)
pB = (46.449, 30.690)

print haversine(pA, pB)

print initial_bearing(pA, pB)

Ответ 12

Здесь просто векторизованная реализация формулы Haversine, представленная @Michael Dunn, дает улучшение в 10-50 раз по сравнению с большими векторами.

from numpy import radians, cos, sin, arcsin, sqrt

def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """

    #Convert decimal degrees to Radians:
    lon1 = np.radians(lon1.values)
    lat1 = np.radians(lat1.values)
    lon2 = np.radians(lon2.values)
    lat2 = np.radians(lat2.values)

    #Implementing Haversine Formula: 
    dlon = np.subtract(lon2, lon1)
    dlat = np.subtract(lat2, lat1)

    a = np.add(np.power(np.sin(np.divide(dlat, 2)), 2),  
                          np.multiply(np.cos(lat1), 
                                      np.multiply(np.cos(lat2), 
                                                  np.power(np.sin(np.divide(dlon, 2)), 2))))
    c = np.multiply(2, np.arcsin(np.sqrt(a)))
    r = 6371

    return c*r

Ответ 13

мы должны использовать функцию atan2 вместо asin, верно?