Я вижу большую разницу в производительности между кодом, скомпилированным в MSVC (в Windows) и GCC (в Linux) для системы Ivy Bridge. Код выполняет плотное умножение матрицы. Я получаю 70% пиковых провалов с GCC и только 50% с MSVC. Я думаю, что, возможно, я выделил разницу между тем, как они преобразуют следующие три свойства.
__m256 breg0 = _mm256_loadu_ps(&b[8*i])
_mm256_add_ps(_mm256_mul_ps(arge0,breg0), tmp0)
GCC делает это
vmovups ymm9, YMMWORD PTR [rax-256]
vmulps ymm9, ymm0, ymm9
vaddps ymm8, ymm8, ymm9
MSVC делает это
vmulps ymm1, ymm2, YMMWORD PTR [rax-256]
vaddps ymm3, ymm1, ymm3
Может ли кто-нибудь объяснить мне, если и почему эти два решения могут дать такую большую разницу в производительности?
Несмотря на то, что MSVC использует одну меньшую инструкцию, она связывает нагрузку с мультом и, возможно, делает ее более зависимой (возможно, загрузка не может быть выполнена не по порядку)? Я имею в виду, что Ivy Bridge может выполнять одну загрузку AVX, один AVX mult и один AVX добавить за один такт, но для этого требуется, чтобы каждая операция была независимой.
Может быть, проблема кроется в другом месте? Вы можете увидеть полный код сборки для GCC и MSVC для самого внутреннего цикла ниже. Вы можете увидеть код С++ для цикла здесь Loop unrolling для достижения максимальной пропускной способности с помощью Ivy Bridge и Haswell
g++ -S -masm = intel matrix.cpp -O3 -mavx -fopenmp
.L4:
vbroadcastss ymm0, DWORD PTR [rcx+rdx*4]
add rdx, 1
add rax, 256
vmovups ymm9, YMMWORD PTR [rax-256]
vmulps ymm9, ymm0, ymm9
vaddps ymm8, ymm8, ymm9
vmovups ymm9, YMMWORD PTR [rax-224]
vmulps ymm9, ymm0, ymm9
vaddps ymm7, ymm7, ymm9
vmovups ymm9, YMMWORD PTR [rax-192]
vmulps ymm9, ymm0, ymm9
vaddps ymm6, ymm6, ymm9
vmovups ymm9, YMMWORD PTR [rax-160]
vmulps ymm9, ymm0, ymm9
vaddps ymm5, ymm5, ymm9
vmovups ymm9, YMMWORD PTR [rax-128]
vmulps ymm9, ymm0, ymm9
vaddps ymm4, ymm4, ymm9
vmovups ymm9, YMMWORD PTR [rax-96]
vmulps ymm9, ymm0, ymm9
vaddps ymm3, ymm3, ymm9
vmovups ymm9, YMMWORD PTR [rax-64]
vmulps ymm9, ymm0, ymm9
vaddps ymm2, ymm2, ymm9
vmovups ymm9, YMMWORD PTR [rax-32]
cmp esi, edx
vmulps ymm0, ymm0, ymm9
vaddps ymm1, ymm1, ymm0
jg .L4
MSVC/FAc/O2/openmp/arch: AVX...
vbroadcastss ymm2, DWORD PTR [r10]
lea rax, QWORD PTR [rax+256]
lea r10, QWORD PTR [r10+4]
vmulps ymm1, ymm2, YMMWORD PTR [rax-320]
vaddps ymm3, ymm1, ymm3
vmulps ymm1, ymm2, YMMWORD PTR [rax-288]
vaddps ymm4, ymm1, ymm4
vmulps ymm1, ymm2, YMMWORD PTR [rax-256]
vaddps ymm5, ymm1, ymm5
vmulps ymm1, ymm2, YMMWORD PTR [rax-224]
vaddps ymm6, ymm1, ymm6
vmulps ymm1, ymm2, YMMWORD PTR [rax-192]
vaddps ymm7, ymm1, ymm7
vmulps ymm1, ymm2, YMMWORD PTR [rax-160]
vaddps ymm8, ymm1, ymm8
vmulps ymm1, ymm2, YMMWORD PTR [rax-128]
vaddps ymm9, ymm1, ymm9
vmulps ymm1, ymm2, YMMWORD PTR [rax-96]
vaddps ymm10, ymm1, ymm10
dec rdx
jne SHORT [email protected]_
EDIT:
Я сравниваю код путем объединения всех операций с плавающей запятой как 2.0*n^3
, где n - ширина квадратной матрицы и деление на время, измеренное с помощью omp_get_wtime()
. Я повторяю цикл несколько раз. На выходе ниже я повторил его 100 раз.
Выход MSVC2012 на турбине Intel Xeon E5 1620 (Ivy Bridge) для всех ядер 3,7 ГГц
maximum GFLOPS = 236.8 = (8-wide SIMD) * (1 AVX mult + 1 AVX add) * (4 cores) * 3.7 GHz
n 64, 0.02 ms, GFLOPs 0.001, GFLOPs/s 23.88, error 0.000e+000, efficiency/core 40.34%, efficiency 10.08%, mem 0.05 MB
n 128, 0.05 ms, GFLOPs 0.004, GFLOPs/s 84.54, error 0.000e+000, efficiency/core 142.81%, efficiency 35.70%, mem 0.19 MB
n 192, 0.17 ms, GFLOPs 0.014, GFLOPs/s 85.45, error 0.000e+000, efficiency/core 144.34%, efficiency 36.09%, mem 0.42 MB
n 256, 0.29 ms, GFLOPs 0.034, GFLOPs/s 114.48, error 0.000e+000, efficiency/core 193.37%, efficiency 48.34%, mem 0.75 MB
n 320, 0.59 ms, GFLOPs 0.066, GFLOPs/s 110.50, error 0.000e+000, efficiency/core 186.66%, efficiency 46.67%, mem 1.17 MB
n 384, 1.39 ms, GFLOPs 0.113, GFLOPs/s 81.39, error 0.000e+000, efficiency/core 137.48%, efficiency 34.37%, mem 1.69 MB
n 448, 3.27 ms, GFLOPs 0.180, GFLOPs/s 55.01, error 0.000e+000, efficiency/core 92.92%, efficiency 23.23%, mem 2.30 MB
n 512, 3.60 ms, GFLOPs 0.268, GFLOPs/s 74.63, error 0.000e+000, efficiency/core 126.07%, efficiency 31.52%, mem 3.00 MB
n 576, 3.93 ms, GFLOPs 0.382, GFLOPs/s 97.24, error 0.000e+000, efficiency/core 164.26%, efficiency 41.07%, mem 3.80 MB
n 640, 5.21 ms, GFLOPs 0.524, GFLOPs/s 100.60, error 0.000e+000, efficiency/core 169.93%, efficiency 42.48%, mem 4.69 MB
n 704, 6.73 ms, GFLOPs 0.698, GFLOPs/s 103.63, error 0.000e+000, efficiency/core 175.04%, efficiency 43.76%, mem 5.67 MB
n 768, 8.55 ms, GFLOPs 0.906, GFLOPs/s 105.95, error 0.000e+000, efficiency/core 178.98%, efficiency 44.74%, mem 6.75 MB
n 832, 10.89 ms, GFLOPs 1.152, GFLOPs/s 105.76, error 0.000e+000, efficiency/core 178.65%, efficiency 44.66%, mem 7.92 MB
n 896, 13.26 ms, GFLOPs 1.439, GFLOPs/s 108.48, error 0.000e+000, efficiency/core 183.25%, efficiency 45.81%, mem 9.19 MB
n 960, 16.36 ms, GFLOPs 1.769, GFLOPs/s 108.16, error 0.000e+000, efficiency/core 182.70%, efficiency 45.67%, mem 10.55 MB
n 1024, 17.74 ms, GFLOPs 2.147, GFLOPs/s 121.05, error 0.000e+000, efficiency/core 204.47%, efficiency 51.12%, mem 12.00 MB