Практические примеры использования НЛТК

Я играю с Natural Language Toolkit (NLTK).

Документация (Book и HOWTO) довольно громоздки, и примеры иногда немного продвинуты.

Есть ли хорошие, но базовые примеры использования/приложений NLTK? Я думаю о таких вещах, как статьи NTLK в блоге Stream Hacker.

Ответ 1

Вот мой собственный практический пример в пользу кого-то еще, рассматривающего этот вопрос (извините образец текста, это было первое, что я нашел на Wikipedia):

import nltk
import pprint

tokenizer = None
tagger = None

def init_nltk():
    global tokenizer
    global tagger
    tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+|[^\w\s]+')
    tagger = nltk.UnigramTagger(nltk.corpus.brown.tagged_sents())

def tag(text):
    global tokenizer
    global tagger
    if not tokenizer:
        init_nltk()
    tokenized = tokenizer.tokenize(text)
    tagged = tagger.tag(tokenized)
    tagged.sort(lambda x,y:cmp(x[1],y[1]))
    return tagged

def main():
    text = """Mr Blobby is a fictional character who featured on Noel
    Edmonds' Saturday night entertainment show Noel House Party,
    which was often a ratings winner in the 1990s. Mr Blobby also
    appeared on the Jamie Rose show of 1997. He was designed as an
    outrageously over the top parody of a one-dimensional, mute novelty
    character, which ironically made him distinctive, absurd and popular.
    He was a large pink humanoid, covered with yellow spots, sporting a
    permanent toothy grin and jiggling eyes. He communicated by saying
    the word "blobby" in an electronically-altered voice, expressing
    his moods through tone of voice and repetition.

    There was a Mrs. Blobby, seen briefly in the video, and sold as a
    doll.

    However Mr Blobby actually started out as part of the 'Gotcha'
    feature during the show second series (originally called 'Gotcha
    Oscars' until the threat of legal action from the Academy of Motion
    Picture Arts and Sciences[citation needed]), in which celebrities
    were caught out in a Candid Camera style prank. Celebrities such as
    dancer Wayne Sleep and rugby union player Will Carling would be
    enticed to take part in a fictitious children programme based around
    their profession. Mr Blobby would clumsily take part in the activity,
    knocking over the set, causing mayhem and saying "blobby blobby
    blobby", until finally when the prank was revealed, the Blobby
    costume would be opened - revealing Noel inside. This was all the more
    surprising for the "victim" as during rehearsals Blobby would be
    played by an actor wearing only the arms and legs of the costume and
    speaking in a normal manner.[citation needed]"""
    tagged = tag(text)    
    l = list(set(tagged))
    l.sort(lambda x,y:cmp(x[1],y[1]))
    pprint.pprint(l)

if __name__ == '__main__':
    main()

Вывод:

[('rugby', None),
 ('Oscars', None),
 ('1990s', None),
 ('",', None),
 ('Candid', None),
 ('"', None),
 ('blobby', None),
 ('Edmonds', None),
 ('Mr', None),
 ('outrageously', None),
 ('.[', None),
 ('toothy', None),
 ('Celebrities', None),
 ('Gotcha', None),
 (']),', None),
 ('Jamie', None),
 ('humanoid', None),
 ('Blobby', None),
 ('Carling', None),
 ('enticed', None),
 ('programme', None),
 ('1997', None),
 ('s', None),
 ("'", "'"),
 ('[', '('),
 ('(', '('),
 (']', ')'),
 (',', ','),
 ('.', '.'),
 ('all', 'ABN'),
 ('the', 'AT'),
 ('an', 'AT'),
 ('a', 'AT'),
 ('be', 'BE'),
 ('were', 'BED'),
 ('was', 'BEDZ'),
 ('is', 'BEZ'),
 ('and', 'CC'),
 ('one', 'CD'),
 ('until', 'CS'),
 ('as', 'CS'),
 ('This', 'DT'),
 ('There', 'EX'),
 ('of', 'IN'),
 ('inside', 'IN'),
 ('from', 'IN'),
 ('around', 'IN'),
 ('with', 'IN'),
 ('through', 'IN'),
 ('-', 'IN'),
 ('on', 'IN'),
 ('in', 'IN'),
 ('by', 'IN'),
 ('during', 'IN'),
 ('over', 'IN'),
 ('for', 'IN'),
 ('distinctive', 'JJ'),
 ('permanent', 'JJ'),
 ('mute', 'JJ'),
 ('popular', 'JJ'),
 ('such', 'JJ'),
 ('fictional', 'JJ'),
 ('yellow', 'JJ'),
 ('pink', 'JJ'),
 ('fictitious', 'JJ'),
 ('normal', 'JJ'),
 ('dimensional', 'JJ'),
 ('legal', 'JJ'),
 ('large', 'JJ'),
 ('surprising', 'JJ'),
 ('absurd', 'JJ'),
 ('Will', 'MD'),
 ('would', 'MD'),
 ('style', 'NN'),
 ('threat', 'NN'),
 ('novelty', 'NN'),
 ('union', 'NN'),
 ('prank', 'NN'),
 ('winner', 'NN'),
 ('parody', 'NN'),
 ('player', 'NN'),
 ('actor', 'NN'),
 ('character', 'NN'),
 ('victim', 'NN'),
 ('costume', 'NN'),
 ('action', 'NN'),
 ('activity', 'NN'),
 ('dancer', 'NN'),
 ('grin', 'NN'),
 ('doll', 'NN'),
 ('top', 'NN'),
 ('mayhem', 'NN'),
 ('citation', 'NN'),
 ('part', 'NN'),
 ('repetition', 'NN'),
 ('manner', 'NN'),
 ('tone', 'NN'),
 ('Picture', 'NN'),
 ('entertainment', 'NN'),
 ('night', 'NN'),
 ('series', 'NN'),
 ('voice', 'NN'),
 ('Mrs', 'NN'),
 ('video', 'NN'),
 ('Motion', 'NN'),
 ('profession', 'NN'),
 ('feature', 'NN'),
 ('word', 'NN'),
 ('Academy', 'NN-TL'),
 ('Camera', 'NN-TL'),
 ('Party', 'NN-TL'),
 ('House', 'NN-TL'),
 ('eyes', 'NNS'),
 ('spots', 'NNS'),
 ('rehearsals', 'NNS'),
 ('ratings', 'NNS'),
 ('arms', 'NNS'),
 ('celebrities', 'NNS'),
 ('children', 'NNS'),
 ('moods', 'NNS'),
 ('legs', 'NNS'),
 ('Sciences', 'NNS-TL'),
 ('Arts', 'NNS-TL'),
 ('Wayne', 'NP'),
 ('Rose', 'NP'),
 ('Noel', 'NP'),
 ('Saturday', 'NR'),
 ('second', 'OD'),
 ('his', 'PP$'),
 ('their', 'PP$'),
 ('him', 'PPO'),
 ('He', 'PPS'),
 ('more', 'QL'),
 ('However', 'RB'),
 ('actually', 'RB'),
 ('also', 'RB'),
 ('clumsily', 'RB'),
 ('originally', 'RB'),
 ('only', 'RB'),
 ('often', 'RB'),
 ('ironically', 'RB'),
 ('briefly', 'RB'),
 ('finally', 'RB'),
 ('electronically', 'RB-HL'),
 ('out', 'RP'),
 ('to', 'TO'),
 ('show', 'VB'),
 ('Sleep', 'VB'),
 ('take', 'VB'),
 ('opened', 'VBD'),
 ('played', 'VBD'),
 ('caught', 'VBD'),
 ('appeared', 'VBD'),
 ('revealed', 'VBD'),
 ('started', 'VBD'),
 ('saying', 'VBG'),
 ('causing', 'VBG'),
 ('expressing', 'VBG'),
 ('knocking', 'VBG'),
 ('wearing', 'VBG'),
 ('speaking', 'VBG'),
 ('sporting', 'VBG'),
 ('revealing', 'VBG'),
 ('jiggling', 'VBG'),
 ('sold', 'VBN'),
 ('called', 'VBN'),
 ('made', 'VBN'),
 ('altered', 'VBN'),
 ('based', 'VBN'),
 ('designed', 'VBN'),
 ('covered', 'VBN'),
 ('communicated', 'VBN'),
 ('needed', 'VBN'),
 ('seen', 'VBN'),
 ('set', 'VBN'),
 ('featured', 'VBN'),
 ('which', 'WDT'),
 ('who', 'WPS'),
 ('when', 'WRB')]

Ответ 2

НЛП в целом очень полезен, поэтому вы можете расширить свой поиск до общего применения текстовой аналитики. Я использовал NLTK для помощи MOSS 2010 путем создания таксономии файлов путем извлечения концептуальных карт. Он работал очень хорошо. Это не займет много времени, прежде чем файлы начнут кластеры полезными способами.

Часто для понимания текстовой аналитики вы должны думать в касательных о том, как вы привыкли думать. Например, текстовая аналитика чрезвычайно полезна для обнаружения. Большинство людей, однако, даже не знают, какая разница между поиском и открытием. Если вы прочитаете эти темы, вы, скорее всего, "найдете" способы, с помощью которых вы могли бы поработать с NLTK.

Кроме того, рассмотрите свое мировоззрение текстовых файлов без NLTK. У вас есть группа случайных строк длины, разделенных пробелами и пунктуацией. Некоторые из знаков препинания изменяют, как они используются, например, период (который также является десятичной точкой и маркером постфикса для сокращения). С помощью NLTK вы получаете слова и многое другое до того, как получаете части речи. Теперь у вас есть дескриптор содержимого. Используйте NLTK для обнаружения понятий и действий в документе. Используйте NLTK для получения "значения" документа. Значение в этом случае относится к сущностным отношениям в документе.

Хорошо, что вам интересно узнать о NLTK. В течение нескольких следующих лет текстовая аналитика будет широко распространена. Те, кто это понимает, лучше подходят для лучшего использования новых возможностей.

Ответ 3

Я автор streamhacker.com (и спасибо за упоминание, я получаю достаточное количество трафика кликов от этого конкретного вопроса). Что конкретно вы пытаетесь сделать? В NLTK есть много инструментов для выполнения различных задач, но в некоторых случаях отсутствует четкая информация о том, как использовать эти инструменты и как их лучше всего использовать. Он также ориентирован на академические проблемы, и поэтому может быть тяжело перевести педагогические примеры на практические решения.