Spark: объединить 2 фрейма данных, добавив индекс/число строк на оба файла данных

Q: Есть ли способ слить два фрейма данных или скопировать столбец данных в другой в PySpark?

Например, у меня есть два Dataframes:

DF1              
C1                    C2                                                        
23397414             20875.7353   
5213970              20497.5582   
41323308             20935.7956   
123276113            18884.0477   
76456078             18389.9269 

второй фрейм данных

DF2
C3                       C4
2008-02-04               262.00                 
2008-02-05               257.25                 
2008-02-06               262.75                 
2008-02-07               237.00                 
2008-02-08               231.00 

Затем я хочу добавить C3 из DF2 в DF1 следующим образом:

New DF              
    C1                    C2          C3                                              
    23397414             20875.7353   2008-02-04
    5213970              20497.5582   2008-02-05
    41323308             20935.7956   2008-02-06
    123276113            18884.0477   2008-02-07
    76456078             18389.9269   2008-02-08

Я надеюсь, что этот пример был ясен.

Ответ 1

функция rownum + window i.e решение 1 или zipWithIndex.map i.e решение 2 должно помочь в этом случае.

Решение 1: вы можете использовать функции окна, чтобы получить этот вид

Затем я предлагаю вам добавить роутинг в качестве дополнительного имени столбца в Dataframe say df1.

  DF1              
    C1                    C2                 columnindex                                             
    23397414             20875.7353            1
    5213970              20497.5582            2
    41323308             20935.7956            3
    123276113            18884.0477            4
    76456078             18389.9269            5

второй блок данных

DF2
C3                       C4             columnindex
2008-02-04               262.00            1        
2008-02-05               257.25            2      
2008-02-06               262.75            3      
2008-02-07               237.00            4          
2008-02-08               231.00            5

Теперь.. сделайте внутреннее объединение df1 и df2, что все...  вы окажетесь ниже ouput

что-то вроде этого

from pyspark.sql.window import Window
from pyspark.sql.functions import rowNumber

w = Window().orderBy()

df1 = ....  // as showed above df1

df2 = ....  // as shown above df2


df11 =  df1.withColumn("columnindex", rowNumber().over(w))
  df22 =  df2.withColumn("columnindex", rowNumber().over(w))

newDF = df11.join(df22, df11.columnindex == df22.columnindex, 'inner').drop(df22.columnindex)
newDF.show()



New DF              
    C1                    C2          C3                                              
    23397414             20875.7353   2008-02-04
    5213970              20497.5582   2008-02-05
    41323308             20935.7956   2008-02-06
    123276113            18884.0477   2008-02-07
    76456078             18389.9269   2008-02-08

Решение 2: Еще один хороший способ (возможно, это лучше всего:)) в scala, который вы можете перевести на pyspark:

/**
* Add Column Index to dataframe 
*/
def addColumnIndex(df: DataFrame) = sqlContext.createDataFrame(
  // Add Column index
  df.rdd.zipWithIndex.map{case (row, columnindex) => Row.fromSeq(row.toSeq :+ columnindex)},
  // Create schema
  StructType(df.schema.fields :+ StructField("columnindex", LongType, false))
)

// Add index now...
val df1WithIndex = addColumnIndex(df1)
val df2WithIndex = addColumnIndex(df2)

 // Now time to join ...
val newone = df1WithIndex
  .join(df2WithIndex , Seq("columnindex"))
  .drop("columnindex")

Ответ 2

Я думал, что я поделился бы переводом python (pyspark) для ответа № 2 выше от @Ram Ghadiyaram:

from pyspark.sql.functions import col
def addColumnIndex(df): 
  # Create new column names
  oldColumns = df.schema.names
  newColumns = oldColumns + ["columnindex"]

  # Add Column index
  df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
                                         row + (columnindex,)).toDF()

  #Rename all the columns
  new_df = reduce(lambda data, idx: data.withColumnRenamed(oldColumns[idx], 
                  newColumns[idx]), xrange(len(oldColumns)), df_indexed)   
  return new_df

# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)

#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
                           'inner').drop("columnindex")

Ответ 3

Я сослался на его ответ (@Jed)

from pyspark.sql.functions import col
def addColumnIndex(df): 
    # Get old columns names and add a column "columnindex"
    oldColumns = df.columns
    newColumns = oldColumns + ["columnindex"]

    # Add Column index
    df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
                                         row + (columnindex,)).toDF()
    #Rename all the columns
    oldColumns = df_indexed.columns  
    new_df = reduce(lambda data, idx:data.withColumnRenamed(oldColumns[idx], 
                  newColumns[idx]), xrange(len(oldColumns)), df_indexed)   
    return new_df

# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)

#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
                           'inner').drop("columnindex")

Ответ 4

для версии Python3,

from pyspark.sql.types import StructType, StructField, LongType

def with_column_index(sdf): 
    new_schema = StructType(sdf.schema.fields + [StructField("ColumnIndex", LongType(), False),])
    return sdf.rdd.zipWithIndex().map(lambda row: row[0] + (row[1],)).toDF(schema=new_schema)

df1_ci = with_column_index(df1)
df2_ci = with_column_index(df2)
join_on_index = df1_ci.join(df2_ci, df1_ci.ColumnIndex == df2_ci.ColumnIndex, 'inner').drop("ColumnIndex")

Ответ 5

Вот простой пример, который может помочь вам, даже если вы уже решили проблему.

  //create First Dataframe
  val df1 = spark.sparkContext.parallelize(Seq(1,2,1)).toDF("lavel1")

  //create second Dataframe
  val df2 = spark.sparkContext.parallelize(Seq((1.0, 12.1), (12.1, 1.3), (1.1, 0.3))). toDF("f1", "f2")

  //Combine both dataframe
  val combinedRow = df1.rdd.zip(df2.rdd). map({
    //convert both dataframe to Seq and join them and return as a row
    case (df1Data, df2Data) => Row.fromSeq(df1Data.toSeq ++ df2Data.toSeq)
  })
//  create new Schema from both the dataframe schema
  val combinedschema =  StructType(df1.schema.fields ++ df2.schema.fields)

//  Create a new dataframe from new row and new schema
  val finalDF = spark.sqlContext.createDataFrame(combinedRow, combinedschema)

  finalDF.show

Ответ 6

Этот ответ решил для меня:

import pyspark.sql.functions as sparkf

# This will return a new DF with all the columns + id
res = df.withColumn('id', sparkf.monotonically_increasing_id())

Кредит Аркади Т

Ответ 7

Развернувшись на Jed answer, в ответ на комментарий Ajinkya:

Чтобы получить те же самые старые имена столбцов, вам нужно заменить "old_cols" на список столбцов недавно названных индексированных столбцов. См. Мою измененную версию функции ниже

def add_column_index(df):
    new_cols = df.schema.names + ['ix']
    ix_df = df.rdd.zipWithIndex().map(lambda (row, ix): row + (ix,)).toDF()
    tmp_cols = ix_df.schema.names
    return reduce(lambda data, idx: data.withColumnRenamed(tmp_cols[idx], new_cols[idx]), xrange(len(tmp_cols)), ix_df)

Ответ 8

Не лучший способ производительности.

df3=df1.crossJoin(df2).show(3)

Ответ 9

Вы можете использовать комбинацию monotonically_increasing_id (гарантированно всегда увеличивается) и row_number (гарантированно всегда дает одну и ту же последовательность). Вы не можете использовать row_number в одиночку, потому что его нужно что-то упорядочить. Итак, здесь мы заказываем по monotonically_increasing_id. Я использую Spark 2.3.1 и Python 2.7.13.

from pandas import DataFrame
from pyspark.sql.functions import (
    monotonically_increasing_id,
    row_number)
from pyspark.sql import Window

DF1 = spark.createDataFrame(DataFrame({
    'C1': [23397414, 5213970, 41323308, 123276113, 76456078],
    'C2': [20875.7353, 20497.5582, 20935.7956, 18884.0477, 18389.9269]}))

DF2 = spark.createDataFrame(DataFrame({
'C3':['2008-02-04', '2008-02-05', '2008-02-06', '2008-02-07', '2008-02-08']}))

DF1_idx = (
    DF1
    .withColumn('id', monotonically_increasing_id())
    .withColumn('columnindex', row_number().over(Window.orderBy('id')))
    .select('columnindex', 'C1', 'C2'))

DF2_idx = (
    DF2
    .withColumn('id', monotonically_increasing_id())
    .withColumn('columnindex', row_number().over(Window.orderBy('id')))
    .select('columnindex', 'C3'))

DF_complete = (
    DF1_idx
    .join(
        other=DF2_idx,
        on=['columnindex'],
        how='inner')
    .select('C1', 'C2', 'C3'))

DF_complete.show()

+---------+----------+----------+
|       C1|        C2|        C3|
+---------+----------+----------+
| 23397414|20875.7353|2008-02-04|
|  5213970|20497.5582|2008-02-05|
| 41323308|20935.7956|2008-02-06|
|123276113|18884.0477|2008-02-07|
| 76456078|18389.9269|2008-02-08|
+---------+----------+----------+