"Parallel.For" для Java?

Мне было интересно, существует ли Parallel.For, эквивалентная версии .net для Java?

Если кто-то может подать пример? спасибо!

Ответ 1

Я думаю, что самое близкое:

ExecutorService exec = Executors.newFixedThreadPool(SOME_NUM_OF_THREADS);
try {
    for (final Object o : list) {
        exec.submit(new Runnable() {
            @Override
            public void run() {
                // do stuff with o.
            }
        });
    }
} finally {
    exec.shutdown();
}

На основе комментариев TheLQ вы должны установить SUM_NUM_THREADS в Runtime.getRuntime().availableProcessors();

Изменить: решил добавить базовую реализацию "Parallel.For"

public class Parallel {
    private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();

    private static final ExecutorService forPool = Executors.newFixedThreadPool(NUM_CORES * 2, new NamedThreadFactory("Parallel.For"));

    public static <T> void For(final Iterable<T> elements, final Operation<T> operation) {
        try {
            // invokeAll blocks for us until all submitted tasks in the call complete
            forPool.invokeAll(createCallables(elements, operation));
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public static <T> Collection<Callable<Void>> createCallables(final Iterable<T> elements, final Operation<T> operation) {
        List<Callable<Void>> callables = new LinkedList<Callable<Void>>();
        for (final T elem : elements) {
            callables.add(new Callable<Void>() {
                @Override
                public Void call() {
                    operation.perform(elem);
                    return null;
                }
            });
        }

        return callables;
    }

    public static interface Operation<T> {
        public void perform(T pParameter);
    }
}

Пример использования Parallel.For

// Collection of items to process in parallel
Collection<Integer> elems = new LinkedList<Integer>();
for (int i = 0; i < 40; ++i) {
    elems.add(i);
}
Parallel.For(elems, 
 // The operation to perform with each item
 new Parallel.Operation<Integer>() {
    public void perform(Integer param) {
        System.out.println(param);
    };
});

Я предполагаю, что эта реализация действительно больше похожа на Parallel.ForEach

Edit Я поставил это на GitHub, если кому-то это интересно. Параллельно для GitHub

Ответ 2

Решение MLaw является очень практичным Parallel.ForEach. Я добавил немного модификации, чтобы сделать Parallel.For.

public class Parallel
{
static final int iCPU = Runtime.getRuntime().availableProcessors();

public static <T> void ForEach(Iterable <T> parameters,
                   final LoopBody<T> loopBody)
{
    ExecutorService executor = Executors.newFixedThreadPool(iCPU);
    List<Future<?>> futures  = new LinkedList<Future<?>>();

    for (final T param : parameters)
    {
        Future<?> future = executor.submit(new Runnable()
        {
            public void run() { loopBody.run(param); }
        });

        futures.add(future);
    }

    for (Future<?> f : futures)
    {
        try   { f.get(); }
        catch (InterruptedException e) { } 
        catch (ExecutionException   e) { }         
    }

    executor.shutdown();     
}

public static void For(int start,
                   int stop,
               final LoopBody<Integer> loopBody)
{
    ExecutorService executor = Executors.newFixedThreadPool(iCPU);
    List<Future<?>> futures  = new LinkedList<Future<?>>();

    for (int i=start; i<stop; i++)
    {
        final Integer k = i;
        Future<?> future = executor.submit(new Runnable()
        {
            public void run() { loopBody.run(k); }
        });     
        futures.add(future);
    }

    for (Future<?> f : futures)
    {
        try   { f.get(); }
        catch (InterruptedException e) { } 
        catch (ExecutionException   e) { }         
    }

    executor.shutdown();     
}
}

public interface LoopBody <T>
{
    void run(T i);
}

public class ParallelTest
{
int k;  

public ParallelTest()
{
    k = 0;
    Parallel.For(0, 10, new LoopBody <Integer>()
    {
        public void run(Integer i)
        {
            k += i;
            System.out.println(i);          
        }
    });
    System.out.println("Sum = "+ k);
}

public static void main(String [] argv)
{
    ParallelTest test = new ParallelTest();
}
}

Ответ 3

Построенный по предложению mlaw, добавьте CountDownLatch. Добавьте chunksize, чтобы уменьшить submit().

При тестировании с 4 миллионами элементов массив, этот дает 5-кратное ускорение по последовательному для() мой процессор Core i7 2630QM.

public class Loop {
    public interface Each {
        void run(int i);
    }

    private static final int CPUs = Runtime.getRuntime().availableProcessors();

    public static void withIndex(int start, int stop, final Each body) {
        int chunksize = (stop - start + CPUs - 1) / CPUs;
        int loops = (stop - start + chunksize - 1) / chunksize;
        ExecutorService executor = Executors.newFixedThreadPool(CPUs);
        final CountDownLatch latch = new CountDownLatch(loops);
        for (int i=start; i<stop;) {
            final int lo = i;
            i += chunksize;
            final int hi = (i<stop) ? i : stop;
            executor.submit(new Runnable() {
                public void run() {
                    for (int i=lo; i<hi; i++)
                        body.run(i);
                    latch.countDown();
                }
            });
        }
        try {
            latch.await();
        } catch (InterruptedException e) {}
        executor.shutdown();
    }

    public static void main(String [] argv) {
        Loop.withIndex(0, 9, new Loop.Each() {
            public void run(int i) {
                System.out.println(i*10);
            }
        });
    }
}

Ответ 5

Вот мой вклад в эту тему https://github.com/pablormier/parallel-loops. Использование очень просто:

Collection<String> upperCaseWords = 
    Parallel.ForEach(words, new Parallel.F<String, String>() {
        public String apply(String s) {
            return s.toUpperCase();
        }
    });

Также возможно изменить некоторые аспекты поведения, такие как количество потоков (по умолчанию используется пул кэшированных потоков):

Collection<String> upperCaseWords = 
            new Parallel.ForEach<String, String>(words)
                .withFixedThreads(4)
                .apply(new Parallel.F<String, String>() {
                    public String apply(String s) {
                        return s.toUpperCase();
                    }
                }).values();

Весь код автономный в одном классе java и не имеет больше зависимостей, чем JDK. Я также рекомендую вам проверить новый способ распараллеливания в функциональном стиле с помощью Java 8

Ответ 6

Более простой вариант:

// A thread pool which runs for the life of the application.
private static final ExecutorService EXEC = 
    Executors.newFixedThreadPool(SOME_NUM_OF_THREADS); 

//later 
EXEC.invokeAll(tasks); // you can optionally specify a timeout.

Ответ 7

Существует эквивалент для Parallel.For доступен как расширение Java. Он называется Ateji PX, у них есть бесплатная версия, с которой вы можете играть. http://www.ateji.com/px/index.html

Это точный эквивалент parallel.for и похож на.

For ||

Дополнительные примеры и пояснения по википедии: http://en.wikipedia.org/wiki/Ateji_PX

Закрытая вещь в Java IMO

Ответ 8

Синхронизация часто убивает ускорение параллельных циклов. Следовательно, для параллельных контуров часто требуются их личные данные и механизм сокращения, чтобы уменьшить все личные данные потоков, чтобы содержать один результат.

Итак, я расширил Parallel.For версию Weimin Xiao с помощью механизма сокращения.

public class Parallel {
public static interface IntLoopBody {
    void run(int i);
}

public static interface LoopBody<T> {
    void run(T i);
}

public static interface RedDataCreator<T> {
    T run();
}

public static interface RedLoopBody<T> {
    void run(int i, T data);
}

public static interface Reducer<T> {
    void run(T returnData, T addData);
}

private static class ReductionData<T> {
    Future<?> future;
    T data;
}

static final int nCPU = Runtime.getRuntime().availableProcessors();

public static <T> void ForEach(Iterable <T> parameters, final LoopBody<T> loopBody) {
    ExecutorService executor = Executors.newFixedThreadPool(nCPU);
    List<Future<?>> futures  = new LinkedList<Future<?>>();

    for (final T param : parameters) {
        futures.add(executor.submit(() -> loopBody.run(param) ));
    }

    for (Future<?> f : futures) {
        try { 
            f.get();
        } catch (InterruptedException | ExecutionException e) { 
            System.out.println(e); 
        }
    }
    executor.shutdown();     
}

public static void For(int start, int stop, final IntLoopBody loopBody) {
    final int chunkSize = (stop - start + nCPU - 1)/nCPU;
    final int loops = (stop - start + chunkSize - 1)/chunkSize;
    ExecutorService executor = Executors.newFixedThreadPool(loops);
    List<Future<?>> futures  = new LinkedList<Future<?>>();

    for (int i=start; i < stop; ) {
        final int iStart = i;
        i += chunkSize;
        final int iStop = (i < stop) ? i : stop;

        futures.add(executor.submit(() -> {
            for (int j = iStart; j < iStop; j++) 
                loopBody.run(j);
        }));     
    }

    for (Future<?> f : futures) {
        try { 
            f.get();
        } catch (InterruptedException | ExecutionException e) { 
            System.out.println(e); 
        }
    }
    executor.shutdown();     
}

public static <T> void For(int start, int stop, T result, final RedDataCreator<T> creator, final RedLoopBody<T> loopBody, final Reducer<T> reducer) {
    final int chunkSize = (stop - start + nCPU - 1)/nCPU;
    final int loops = (stop - start + chunkSize - 1)/chunkSize;
    ExecutorService executor = Executors.newFixedThreadPool(loops);
    List<ReductionData<T>> redData  = new LinkedList<ReductionData<T>>();

    for (int i = start; i < stop; ) {
        final int iStart = i;
        i += chunkSize;
        final int iStop = (i < stop) ? i : stop;
        final ReductionData<T> rd = new ReductionData<T>();

        rd.data = creator.run();
        rd.future = executor.submit(() -> {
            for (int j = iStart; j < iStop; j++) {
                loopBody.run(j, rd.data);
            }
        });
        redData.add(rd);
    }

    for (ReductionData<T> rd : redData) {
        try { 
            rd.future.get();
            if (rd.data != null) {
                reducer.run(result, rd.data);
            }
        } catch (InterruptedException | ExecutionException e) { 
            e.printStackTrace();
        }
    }
    executor.shutdown();     
}
}

Вот простой пример: параллельный счетчик символов с использованием несинхронизированной карты.

import java.util.*;

public class ParallelTest {
static class Counter {
    int cnt;

    Counter() {
        cnt = 1;
    }
}

public static void main(String[] args) {
    String text = "More formally, if this map contains a mapping from a key k to a " + 
            "value v such that key compares equal to k according to the map ordering, then " +
            "this method returns v; otherwise it returns null.";
    Map<Character, Counter> charCounter1 = new TreeMap<Character, Counter>();
    Map<Character, Counter> charCounter2 = new TreeMap<Character, Counter>();

    // first sequentially
    for(int i=0; i < text.length(); i++) {
        char c = text.charAt(i);
        Counter cnt = charCounter1.get(c);
        if (cnt == null) {
            charCounter1.put(c, new Counter());
        } else {
            cnt.cnt++;
        }
    }
    for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
        System.out.println(entry.getKey() + ": " + entry.getValue().cnt);
    }

    // now parallel without synchronization
    Parallel.For(0, text.length(), charCounter2,
        // Creator
        () -> new TreeMap<Character, Counter>(), 
        // Loop Body
        (i, map) -> {
            char c = text.charAt(i);
            Counter cnt = map.get(c);
            if (cnt == null) {
                map.put(c, new Counter());
            } else {
                cnt.cnt++;
            }
        }, 
        // Reducer
        (result, map) -> {
            for(Map.Entry<Character, Counter> entry: map.entrySet()) {
                Counter cntR = result.get(entry.getKey());
                if (cntR == null) {
                    result.put(entry.getKey(), entry.getValue());
                } else {
                    cntR.cnt += entry.getValue().cnt;
                }
            }
        }
    );

    // compare results
    assert charCounter1.size() == charCounter2.size() : "wrong size: " + charCounter1.size() + ", " + charCounter2.size();
    Iterator<Map.Entry<Character, Counter>> it2 = charCounter2.entrySet().iterator();
    for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
        Map.Entry<Character, Counter> entry2 = it2.next();
        assert entry.getKey() == entry2.getKey() && entry.getValue().cnt == entry2.getValue().cnt : "wrong content";
    }

    System.out.println("Well done!");
}
}

Ответ 9

У меня есть обновленный Java Parallel класс, который может выполнять Parallel.For, Parallel.ForEach, Parallel.Tasks и секционированный параллельный цикл. Исходный код выглядит следующим образом:

Примеры использования этих параллельных циклов следующие:

public static void main(String [] argv)
{
    //sample data
    final ArrayList<String> ss = new ArrayList<String>();

    String [] s = {"a", "b", "c", "d", "e", "f", "g"};
    for (String z : s) ss.add(z);
    int m = ss.size();

    //parallel-for loop
    System.out.println("Parallel.For loop:");
    Parallel.For(0, m, new LoopBody<Integer>()
    {
        public void run(Integer i)
        {
           System.out.println(i +"\t"+ ss.get(i));   
        }       
    });   

   //parallel for-each loop
   System.out.println("Parallel.ForEach loop:");
   Parallel.ForEach(ss, new LoopBody<String>()
   {
       public void run(String p)
       {
           System.out.println(p);               
       }       
   });

   //partitioned parallel loop
   System.out.println("Partitioned Parallel loop:");
   Parallel.ForEach(Parallel.create(0, m), new LoopBody<Partition>()
   {
       public void run(Partition p)
       {
           for(int i=p.start; i<p.end; i++)
               System.out.println(i +"\t"+ ss.get(i));
       }
   });

   //parallel tasks
   System.out.println("Parallel Tasks:");
   Parallel.Tasks(new Task []
   {
       //task-1
       new Task() {public void run()
       {
           for(int i=0; i<3; i++)
               System.out.println(i +"\t"+ ss.get(i));
       }},

       //task-2
       new Task() {public void run()
       {
           for (int i=3; i<6; i++)
               System.out.println(i +"\t"+ ss.get(i));
       }}   
   });
}

Ответ 10

Исходный код: https://github.com/crammeur/MyInvoices/blob/master/crammeurLibrairy/src/main/java/ca/qc/bergeron/marcantoine/crammeur/librairy/utils/Parallel.java

[ОБНОВЛЕНИЕ]

Параллельный класс:

private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final int MAX_THREAD = NUM_CORES*2;

@NotNull
public static <T> void For(final Collection<T> elements, final Operation<T> operation) {
    ExecutorService executor = Executors.newFixedThreadPool(MAX_THREAD);
    final Iterator<T> iterator = elements.iterator();
    final Runnable runnable = new Runnable() {
        final Callable<Void> callable = new Callable<Void>() {
            @Override
            public Void call() throws Exception {
                T result;
                synchronized (iterator) {
                    result = iterator.next();
                }
                operation.perform(result);
                return null;
            }
        };
        @Override
        public void run() {
            while (iterator.hasNext()) {
                try {
                    synchronized (operation) {
                        if (operation.follow()) {
                            synchronized (callable) {
                                callable.call();
                            }
                            if (!operation.follow()) {
                                break;
                            }
                        } else {
                            break;
                        }
                    }
                } catch (NoSuchElementException e) {
                    break;
                } catch (Exception e) {
                    e.printStackTrace();
                    throw new RuntimeException(e);
                }
            }
        }
    };
    for (int threadIndex=0; threadIndex<MAX_THREAD; threadIndex++) {
        executor.execute(runnable);
    }
    executor.shutdown();
    while (!executor.isTerminated()) {
        try {
            Thread.sleep(0,1);
        } catch (InterruptedException e) {
            e.printStackTrace();
            throw new RuntimeException(e);
        }
    }
}

public interface Operation<T,R> {
    R perform(T pParameter);
    boolean follow();
}

Ответ 11

Это то, что я использую для Java 7 и менее.

Для Java 8 вы можете использовать forEach()

[ОБНОВИТЬ ]

Параллельный класс:

private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final int MAX_THREAD = NUM_CORES*2;  

public static <T2 extends T, T> void For(final Iterable<T2> elements, final Operation<T> operation) {
    if (elements != null) {
        final Iterator<T2> iterator = elements.iterator();
        if (iterator.hasNext()) {
            final Throwable[] throwable = new Throwable[1];
            final Callable<Void> callable = new Callable<Void>() {
                boolean first = true;
                @Override
                public final Void call() throws Exception {
                    if ((first || operation.follow()) && iterator.hasNext()) {
                        T result;
                        result = iterator.next();
                        operation.perform(result);
                        if (first) {
                            synchronized (this) {
                                first = false;
                            }
                        }
                    }
                    return null;
                }
            };
            final Runnable runnable = new Runnable() {
                @Override
                public final void run() {
                    while (iterator.hasNext()) {
                        try {
                            synchronized (callable) {
                                callable.call();
                            }
                            if (!operation.follow()) {
                                break;
                            }
                        } catch (Throwable t) {
                            t.printStackTrace();
                            synchronized (throwable) {
                                throwable[0] = t;
                            }
                            throw new RuntimeException(t);
                        }
                    }
                }
            };
            final ExecutorService executor = Executors.newFixedThreadPool(MAX_THREAD);
            for (int threadIndex=0; threadIndex<MAX_THREAD && iterator.hasNext(); threadIndex++) {
                executor.execute(runnable);
            }
            executor.shutdown();
            while (!executor.isTerminated()) {
                try {
                    Thread.sleep(0,1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                    throw new RuntimeException(e);
                }
            }
            if (throwable[0] != null) throw new RuntimeException(throwable[0]);
        }
    }
}

public interface Operation<T> {
    void perform(T pParameter);
    boolean follow();
}

пример

@Test
public void test() {
    List<Long> longList = new ArrayList<Long>();
    for (long i = 0; i < 1000000; i++) {
        longList.add(i);
    }
    final List<Integer> integerList = new LinkedList<>();
    Parallel.For((Iterable<? extends Number>) longList, new Parallel.Operation<Number>() {

        @Override
        public void perform(Number pParameter) {
            System.out.println(pParameter);
            integerList.add(pParameter.intValue());
        }

        @Override
        public boolean follow() {
            return true;
        }
    });
    for (Number num : integerList) {
        System.out.println(num);
    }
}

Monitoring

Ответ 12

Я обнаружил, что ForkJoinPool и IntStream очень полезны в моем случае (Parallel For с ограниченным числом потоков).

С#:

static void MathParallel(int threads)
        {
            Parallel.For(1, partitions, new ParallelOptions { MaxDegreeOfParallelism = threads }, (i) => {
                partitionScores[i] = Math.Sin(3*i);
            });
        }

и эквивалент Java:

static void mathParallel(int threads) {
        ForkJoinPool pool = new ForkJoinPool(threads);
            pool.submit(()-> IntStream.range(0, partitions).parallel().forEach(i -> {
                partitionScores[i] = Math.sin(3*i);
            }));
        pool.shutdown();
        while (!pool.isTerminated()){
        }
    }